early conceptus |
embryo ectoderm |
embryo endoderm |
embryo mesoderm |
embryo mesenchyme |
extraembryonic component |
alimentary system |
auditory system |
branchial arches |
cardiovascular system |
connective tissue |
endocrine system |
exocrine system |
hemolymphoid system |
integumental system |
limbs |
liver and biliary system |
musculoskeletal system |
nervous system |
olfactory system |
reproductive system |
respiratory system |
urinary system |
visual system |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Transcription Start Site | Location | Distance from Gene 5'-end |
Tssr15852 | Chr1:192946314-192946387 (-) | -6 bp |
Tssr15851 | Chr1:192946301-192946312 (-) | 38 bp |
Tssr15850 | Chr1:192924734-192924741 (-) | 21,607 bp |
Tssr15849 | Chr1:192924654-192924676 (-) | 21,680 bp |
Tssr15848 | Chr1:192923815-192923841 (-) | 22,517 bp |
QTL | Genetic Location* | Genome Location (GRCm39) | Reference | QTL Note |
Hdlq20 | Chr1, 88.97 cM | J:133501 | SNP analysis, mRNA microarray analysis and protein expression difference analysis were used to narrow the QTL intervals of 9 previously identified QTLs for HDL cholesterol (Hdlq1, Hdlq20, Hdlq24), gallstone susceptibility (Lith17, Lith19, Lith21) and obesity (Obwq3, Obwq4, Obwq5). This methodology identified a manageable list of potential candidate genes for each QTL. A panel of 130,000 SNPs for SM/J and NZB/BlNJ reduced the QTL intervals by 40%-72%. Liver mRNA analysis identified 10 genes differentially expressed between SM/J and NZB/BlNJ strains and this finding was confirmed using TaqMan RT-PCR assays. Mass spectrometry analysis of liver proteins identified 45 proteins displaying differential expression between SM/J andNZB/BlNJ. On mouse Chromosome 1, Apoa2 (92.6 cM), Fh1, and Hsd11b1 were identified as potential candidate genes for Hdlq20 at 96 cM. Apoa2 was identified based on protein expression and SNP coding sequence differences. Apoa2 displays up-regulation in NZB/BlNJ liver proteins comparedto SM/J. Fh1 displays gene coding sequence differences and decreased protein expression in NZB/BlNJ livers compared to SM/J. Hsd11b1 was identified based on decreased protein expression in NZB/BlNJ. On mouse Chromosome 5, Acads (65 cM) and Scarb1 (68 cM)were identified as potential candidate genes for Hdlq1 (70 cM) and Lith17 (60 cM). Acads was identified on the basis of decreased protein expression in NZB/BlNJ livers compared to SM/J, as well as coding sequence differences. Scarb1 displays coding regionsequence differences and decreased liver mRNA expression in NZB/BlNJ. Scarb1 is located more closely to Hdlq1 and decreased Scarb1 mRNA expression was observed for this QTL. On mouse Chromosome 6, Pparg (52.7 cM), Rassf4 and Adipor2 (60.7 cM) were identified as potential candidate genes for Hdlq24 (66 cM) and Obwq3 (42 cM). Pparg displays coding sequences differences between NZB/BlNJ and SM/J while Rassf4 displays decreased liver mRNA expression in NZB/BlNJ animals. Adipor2 displays increased liver mRNAexpression in NZB/BlNJ and gene coding sequence differences. Ndufa9 was identified as a QTL for Hdlq24 on the basis of decreased liver protein expression in NZB/BlNJ and coding sequence differences. On mouse Chromosome 8,Slc10a2 (2 cM) was identifiedas a potential candidate gene for Lith19 (0 cM) on the basis of increased liver mRNA expression in NZB/BlNJ animals compared to SM/J. On mouse Chromosome 10, Ctgf (17 cM) was identified as a potential candidate gene for Lith21 (24 cM)on the basis of decreased liver mRNA expression in NZB/BlNJ animals compared to SM/J and gene coding sequences differences. On mouse Chromosome 17, Pgc (30 cM) was identified as a potential candidate for Obwq4 (32 cM).Pgc displays coding sequence differences between NZB/BlNJ and SM/J. Atrnl1 was identified as a candidate for Obwq5 (52 cM) on chromosome 19. Atrnl1 displays increased liver mRNA expression in NZB/BlNJ animals compared to SM/J. | |
Insq2 | Chr1, syntenic | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. A potential candidate gene for Obq2 at 15 cM on mouse Chromosome 1 as identified by ExQuest is Gsta3. For QTLs Obq7 (28.7 cM), Wt6q1 (27 cM), Insq2 (36cM), and Insq6 (37 cM), potential candidate genes Aox1 (23.2 cM), Fn1 (36.1 cM), Pecr, Igfbp2 (36.1 cM), Plcd4 (39.2 cM), Scg2 (43.6 cM), Irs1, and Inpp5d (57 cM) were identified. For QTL Nidd6 (77 cM), potential candidate gene Qscn6 was identified. For QTL Obq9 (88.4 cM), potential candidate genes Fmo1, Fmo3, and Apoa2 (92.6 cM) were identified. For QTL Wt6q2 (108 cM), potential candidate gene Hsd11b1 was identified. | |
Insq6 | Chr1, 38.01 cM | Chr1:73726922-73727077 | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. A potential candidate gene for Obq2 at 15 cM on mouse Chromosome 1 as identified by ExQuest is Gsta3. For QTLs Obq7 (28.7 cM), Wt6q1 (27 cM), Insq2 (36cM), and Insq6 (37 cM), potential candidate genes Aox1 (23.2 cM), Fn1 (36.1 cM), Pecr, Igfbp2 (36.1 cM), Plcd4 (39.2 cM), Scg2 (43.6 cM), Irs1, and Inpp5d (57 cM) were identified. For QTL Nidd6 (77 cM), potential candidate gene Qscn6 was identified. For QTL Obq9 (88.4 cM), potential candidate genes Fmo1, Fmo3, and Apoa2 (92.6 cM) were identified. For QTL Wt6q2 (108 cM), potential candidate gene Hsd11b1 was identified. |
Nidd6 | Chr1, 65.11 cM | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. A potential candidate gene for Obq2 at 15 cM on mouse Chromosome 1 as identified by ExQuest is Gsta3. For QTLs Obq7 (28.7 cM), Wt6q1 (27 cM), Insq2 (36cM), and Insq6 (37 cM), potential candidate genes Aox1 (23.2 cM), Fn1 (36.1 cM), Pecr, Igfbp2 (36.1 cM), Plcd4 (39.2 cM), Scg2 (43.6 cM), Irs1, and Inpp5d (57 cM) were identified. For QTL Nidd6 (77 cM), potential candidate gene Qscn6 was identified. For QTL Obq9 (88.4 cM), potential candidate genes Fmo1, Fmo3, and Apoa2 (92.6 cM) were identified. For QTL Wt6q2 (108 cM), potential candidate gene Hsd11b1 was identified. | |
Obq2 | Chr1, 6.50 cM | Chr1:20941620-20941887 | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. A potential candidate gene for Obq2 at 15 cM on mouse Chromosome 1 as identified by ExQuest is Gsta3. For QTLs Obq7 (28.7 cM), Wt6q1 (27 cM), Insq2 (36cM), and Insq6 (37 cM), potential candidate genes Aox1 (23.2 cM), Fn1 (36.1 cM), Pecr, Igfbp2 (36.1 cM), Plcd4 (39.2 cM), Scg2 (43.6 cM), Irs1, and Inpp5d (57 cM) were identified. For QTL Nidd6 (77 cM), potential candidate gene Qscn6 was identified. For QTL Obq9 (88.4 cM), potential candidate genes Fmo1, Fmo3, and Apoa2 (92.6 cM) were identified. For QTL Wt6q2 (108 cM), potential candidate gene Hsd11b1 was identified. |
Obq7 | Chr1, 33.31 cM | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. A potential candidate gene for Obq2 at 15 cM on mouse Chromosome 1 as identified by ExQuest is Gsta3. For QTLs Obq7 (28.7 cM), Wt6q1 (27 cM), Insq2 (36cM), and Insq6 (37 cM), potential candidate genes Aox1 (23.2 cM), Fn1 (36.1 cM), Pecr, Igfbp2 (36.1 cM), Plcd4 (39.2 cM), Scg2 (43.6 cM), Irs1, and Inpp5d (57 cM) were identified. For QTL Nidd6 (77 cM), potential candidate gene Qscn6 was identified. For QTL Obq9 (88.4 cM), potential candidate genes Fmo1, Fmo3, and Apoa2 (92.6 cM) were identified. For QTL Wt6q2 (108 cM), potential candidate gene Hsd11b1 was identified. | |
Obq9 | Chr1, 74.68 cM | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. A potential candidate gene for Obq2 at 15 cM on mouse Chromosome 1 as identified by ExQuest is Gsta3. For QTLs Obq7 (28.7 cM), Wt6q1 (27 cM), Insq2 (36cM), and Insq6 (37 cM), potential candidate genes Aox1 (23.2 cM), Fn1 (36.1 cM), Pecr, Igfbp2 (36.1 cM), Plcd4 (39.2 cM), Scg2 (43.6 cM), Irs1, and Inpp5d (57 cM) were identified. For QTL Nidd6 (77 cM), potential candidate gene Qscn6 was identified. For QTL Obq9 (88.4 cM), potential candidate genes Fmo1, Fmo3, and Apoa2 (92.6 cM) were identified. For QTL Wt6q2 (108 cM), potential candidate gene Hsd11b1 was identified. | |
Wt6q1 | Chr1, syntenic | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. A potential candidate gene for Obq2 at 15 cM on mouse Chromosome 1 as identified by ExQuest is Gsta3. For QTLs Obq7 (28.7 cM), Wt6q1 (27 cM), Insq2 (36cM), and Insq6 (37 cM), potential candidate genes Aox1 (23.2 cM), Fn1 (36.1 cM), Pecr, Igfbp2 (36.1 cM), Plcd4 (39.2 cM), Scg2 (43.6 cM), Irs1, and Inpp5d (57 cM) were identified. For QTL Nidd6 (77 cM), potential candidate gene Qscn6 was identified. For QTL Obq9 (88.4 cM), potential candidate genes Fmo1, Fmo3, and Apoa2 (92.6 cM) were identified. For QTL Wt6q2 (108 cM), potential candidate gene Hsd11b1 was identified. | |
Wt6q2 | Chr1, syntenic | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. A potential candidate gene for Obq2 at 15 cM on mouse Chromosome 1 as identified by ExQuest is Gsta3. For QTLs Obq7 (28.7 cM), Wt6q1 (27 cM), Insq2 (36cM), and Insq6 (37 cM), potential candidate genes Aox1 (23.2 cM), Fn1 (36.1 cM), Pecr, Igfbp2 (36.1 cM), Plcd4 (39.2 cM), Scg2 (43.6 cM), Irs1, and Inpp5d (57 cM) were identified. For QTL Nidd6 (77 cM), potential candidate gene Qscn6 was identified. For QTL Obq9 (88.4 cM), potential candidate genes Fmo1, Fmo3, and Apoa2 (92.6 cM) were identified. For QTL Wt6q2 (108 cM), potential candidate gene Hsd11b1 was identified. |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/10/2024 MGI 6.24 |
|
|