Human Disease | Mouse Models | ||||
---|---|---|---|---|---|
|
IDs
|
||||
IDs
|
|||||
IDs
|
early conceptus |
embryo ectoderm |
embryo endoderm |
embryo mesoderm |
embryo mesenchyme |
extraembryonic component |
alimentary system |
auditory system |
branchial arches |
cardiovascular system |
connective tissue |
endocrine system |
exocrine system |
hemolymphoid system |
integumental system |
limbs |
liver and biliary system |
musculoskeletal system |
nervous system |
olfactory system |
reproductive system |
respiratory system |
urinary system |
visual system |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Transcription Start Site | Location | Distance from Gene 5'-end |
Tssr149692 | Chr17:84990360-84990372 (-) | 73 bp |
Tssr149691 | Chr17:84990313-84990342 (-) | 111 bp |
Tssr149690 | Chr17:84990299-84990310 (-) | 134 bp |
Tssr149689 | Chr17:84984390-84984393 (-) | 6,047 bp |
QTL | Genetic Location* | Genome Location (GRCm39) | Reference | QTL Note |
Hdl4 | Chr17, syntenic | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. Potential candidate genes for Hdl4 (32.3 cM) on mouse Chromosome 17 as identified by ExQuest are Gnmt, Lrg1, and Sepx1 (10 cM). For QTL Insq5 (56.7 cM), potential candidate gene Abcg5 (54.5 cM) was identified. For QTL Obq4 (4 cM) and Wta4 (17 cM), potential candidate genes Plg (7.3 cM), Acat2 (7.55 cM), Acat3 (7.55 cM), Hagh (11 cM), Igfals, Decr2, Clps (17.1 cM), Tff1 (17 cM), Tff2 (17 cM), Tff3 (17 cM), and Apom were identified. Tff3 exhibits almost undetectable levels of transcription in the liver of Tally Ho animals compared C57BL/6J. | |
Insq5 | Chr17, syntenic | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. Potential candidate genes for Hdl4 (32.3 cM) on mouse Chromosome 17 as identified by ExQuest are Gnmt, Lrg1, and Sepx1 (10 cM). For QTL Insq5 (56.7 cM), potential candidate gene Abcg5 (54.5 cM) was identified. For QTL Obq4 (4 cM) and Wta4 (17 cM), potential candidate genes Plg (7.3 cM), Acat2 (7.55 cM), Acat3 (7.55 cM), Hagh (11 cM), Igfals, Decr2, Clps (17.1 cM), Tff1 (17 cM), Tff2 (17 cM), Tff3 (17 cM), and Apom were identified. Tff3 exhibits almost undetectable levels of transcription in the liver of Tally Ho animals compared C57BL/6J. | |
Lith9 | Chr17, 60.67 cM | Chr17:84965662-84990439 | J:97424 | An initial genome scan was performed with 186 (PERA/EiJ x DBA/2J) F2 animals using 98 SSLP markers at a resolution of 17.1 cM. Parental strain PERA/EiJ is resistant to gallstone formation after 8 weeks on a high fat diet where as parental strain DBA/2J is susceptible. Animals were fed a high fat diet starting at 6-8 weeks of age. After candidate loci were identified an addition set of 93 F2 animals were genotyped at selected regions. This dataset was combined with a previous PERA/EiJ x I/LnJ dataset for additional analysis. The Chr 17 QTL, Lith9, did not exceed the threshold for suggestive QTL in the PERA/EiJ x DBA/2J cross but acheived a LOD score of 5.8 at 52cM in the combined data analysis. Abcg5 (54.5 cM)and Abcg8 (54.5 cM) on mouse Chromosome 17have been proposed as candidate genes for Lith9. Expression analysis showed higher levels of Abcg5 and Abcg8 mRNA in PERA/EiJ animals compared to DBA/2J and I/LnJ. As expected Abcg5 and Abcg8 mRNA levels didnot differ between DBA/2J and I/LnJ. |
Obq4 | Chr17, 4.92 cM | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. Potential candidate genes for Hdl4 (32.3 cM) on mouse Chromosome 17 as identified by ExQuest are Gnmt, Lrg1, and Sepx1 (10 cM). For QTL Insq5 (56.7 cM), potential candidate gene Abcg5 (54.5 cM) was identified. For QTL Obq4 (4 cM) and Wta4 (17 cM), potential candidate genes Plg (7.3 cM), Acat2 (7.55 cM), Acat3 (7.55 cM), Hagh (11 cM), Igfals, Decr2, Clps (17.1 cM), Tff1 (17 cM), Tff2 (17 cM), Tff3 (17 cM), and Apom were identified. Tff3 exhibits almost undetectable levels of transcription in the liver of Tally Ho animals compared C57BL/6J. | |
Wta4 | Chr17, 17.98 cM | Chr17:33819721-33819843 | J:99477 | Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes. Potential candidate genes for Hdl4 (32.3 cM) on mouse Chromosome 17 as identified by ExQuest are Gnmt, Lrg1, and Sepx1 (10 cM). For QTL Insq5 (56.7 cM), potential candidate gene Abcg5 (54.5 cM) was identified. For QTL Obq4 (4 cM) and Wta4 (17 cM), potential candidate genes Plg (7.3 cM), Acat2 (7.55 cM), Acat3 (7.55 cM), Hagh (11 cM), Igfals, Decr2, Clps (17.1 cM), Tff1 (17 cM), Tff2 (17 cM), Tff3 (17 cM), and Apom were identified. Tff3 exhibits almost undetectable levels of transcription in the liver of Tally Ho animals compared C57BL/6J. |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/10/2024 MGI 6.24 |
|
|