About   Help   FAQ
Insq2SM/J
QTL Variant Detail
Summary
QTL variant: Insq2SM/J
Name: insulin QTL 2; SM/J
MGI ID: MGI:2154156
QTL: Insq2  Location: unknown  Genetic Position: Chr1, Syntenic
Variant
origin
Strain of Specimen:  SM/J
Variant
description
Allele Type:    QTL
Mutation:    Undefined
    This allele confers increased insulin levels in female animals compared to A/J. (J:64138)
Inheritance:    Not Specified
Phenotypes
Loading...
View phenotypes and curated references for all genotypes (concatenated display).
Expression
In Structures Affected by this Mutation: 1 anatomical structure(s)
Notes

Candidate Genes

J:91835

The correlation between gene expression and dietary interaction was examined in a population of (BALB/cStCrlfC3H/Nctr x VY/WffC3Hf/Nctr-A(vy)/a)F1 animals. A/a and A/Avy animals were placed on a 70% (calorie restricted) or 100% (non-restricted) diet andliver mRNA levels were assessed for over 18,000 genes using DNA microarrays. Twenty-eight known genes showing statistically significant differential expression between the 70% and 100% calorie diets and A/a and A/Avy genotypes mapped near known diabesity QTLs. These genes may be considered further for candidate genes.

On mouse Chromosome 1, Idh1 (29.8 cM) showed differential expression between restricted and unrestricted diets on the A/a background. Diabesity QTLs mapping near Idh1 are Dbsty1 (21 cM),Insq2 (36 cM), Wt10q1 (25 cM), Wt6q1 (27 cM), Obq7 (28.7 cM), and Bw5 (36 cM). At another locus, Pea15 (93.8 cM) showed differential expression between restricted and unrestricted diets on the A/a background and F11r (93.3 cM) showed differential expression between A/a and A/Avy animals on the restricted diet. Diabesity QTL Obq9 (88.4 cM) maps near Pea15 and F11r.

J:99477

Authors used novel data mining tool ExQuest to identify novel candidate genes for existing diabesity QTLs. Next, candidate gene expression in the liver, adipose, and pancreas of diabesity-prone Tally Ho mice and diabesity-resistant C57BL/6J mice was assessed by quantitative PCR analysis. Several potential candidate genes, some with no previous association to diabesity QTLs, were identified. Since QTL intervals may be large and could contain hundreds or thousands of potential candidate genes, this method allows researchers to focus on those with strong potential as well as identify novel candidate genes.

A potential candidate gene for Obq2 at 15 cM on mouse Chromosome 1 as identified by ExQuest is Gsta3. For QTLs Obq7 (28.7 cM), Wt6q1 (27 cM), Insq2 (36cM), and Insq6 (37 cM), potential candidate genes Aox1 (23.2 cM), Fn1 (36.1 cM), Pecr, Igfbp2 (36.1 cM), Plcd4 (39.2 cM), Scg2 (43.6 cM), Irs1, and Inpp5d (57 cM) were identified. For QTL Nidd6 (77 cM), potential candidate gene Qscn6 was identified. For QTL Obq9 (88.4 cM), potential candidate genes Fmo1, Fmo3, and Apoa2 (92.6 cM) were identified. For QTL Wt6q2 (108 cM), potential candidate gene Hsd11b1 was identified.

Mapping and Phenotype information for this QTL, its variants and associated markers

J:64138

The SMXA (SM/J x A/J) RI line was informative in mapping suggestive QTLs for Body Weight, Insulin, Triglyceride and Phospholipid in selected RI strains. In Male mice a body weight QTL (Bw17) was associated with D1Rik146 on mouse Chromosome 1. In additiona QTL for Insulin levels (Insq2) in blood also mapped to mouse Chromosome 1 in female mice and was associated with D1Rik124.

References
Original:  J:64138 Anunciado RV, et al., Distribution of body weight, blood insulin and lipid levels in the SMXA recombinant inbred strains and the QTL analysis. Exp Anim. 2000 Jul;49(3):217-24
All:  1 reference(s)

Contributing Projects:
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO)
Citing These Resources
Funding Information
Warranty Disclaimer, Privacy Notice, Licensing, & Copyright
Send questions and comments to User Support.
last database update
12/10/2024
MGI 6.24
The Jackson Laboratory