Summary |
|
|||||||||||||
Variant origin |
|
|||||||||||||
Variant description |
|
|||||||||||||
Phenotypes |
View phenotypes and curated references for all genotypes (concatenated display).
|
|||||||||||||
Expression |
|
|||||||||||||
Notes |
Mapping and Phenotype information for this QTL, its variants and associated markersJ:55483Authors used a composite base population from four outbred strains (NIH, ICR, CF-1 and CFW) to select for lines showing a difference in heat loss. After 15 generations of selection, the MH line showed higher heat loss, consumed more feed, were leaner and more active than the ML line of mice. C57BL/6J was chosen as the inbred line to create a resource population from a cross between a selection line and an inbred line. Average heat loss and feed intake of the C57BL/6J mice were similar to that of mice from the ML line but their body composition was similar to the MH line. To identify QTLs that are responsible for heat loss and other phenotypes related to energy balance, a complete genome wide scan was conducted in a (MH x C57BL/6J)F2 intercross (n = 560). Regions harboring QTL with the greatest effects were then evaluated in a (MH x ML)F2 intercross (n = 560). A QTL influencing liver weight, Livq1 (LOD = 3.7, 3.0% of residual variance explained) was identified with a peak at 66 cM on Chromosome 7 in the(MH x C57BL/6J)F2 intercross. The MH allele was responsible for increased liver weigh for this QTL. |
|||||||||||||
References |
|
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/17/2024 MGI 6.24 |
|
|