Summary |
|
||||||||||
Variant origin |
|
||||||||||
Variant description |
|
||||||||||
Phenotypes |
View phenotypes and curated references for all genotypes (concatenated display).
|
||||||||||
Expression |
|
||||||||||
Notes |
Hdlq24 exhibits additive inheritance.
Candidate Genes
SNP analysis, mRNA microarray analysis and protein expression difference analysis were used to narrow the QTL intervals of 9 previously identified QTLs for HDL cholesterol (Hdlq1, Hdlq20, Hdlq24), gallstone susceptibility (Lith17, Lith19, Lith21) and obesity (Obwq3, Obwq4, Obwq5). This methodology identified a manageable list of potential candidate genes for each QTL. Mapping and Phenotype information for this QTL, its variants and associated markersJ:89309Linkage analysis was performed on 513 animals from a (SM/J x NZB/BlNJ)F2 intercross to map QTLs associated with HDL cholesterol levels on a CHOW or atherogenic diet. Genome scan was conducted using 157 polymorphic markers. Parental strain NZB/BlNJ exhibits elevated HDL cholesterol on both CHOW and atherogenic diets compared to parental strain SM/J. Male animals from both strains exhibit increased HDL cholesterol compared to females. Hdlq20 mapped to 96 cM on mouse Chromosome 1 near D1Mit291 (LOD=11.0 on CHOW diet, LOD=4.1 on Ath diet). The QTL range of Hdlq20 spans 94 cM - 103 cM. NZB/BlNJ-derived alleles confer increased HDL cholesterol with dominant inheritance. Hdlq20 overlaps with previously identified QTL Hdlq5 at 85 cM and may represent the same locus. Apoa2 has been identified as a strong candidate gene for Hdlq20.Hdlq21 mapped to 56 cM on mouse Chromosome 3 near D3Mit11 (LOD=4.0 on CHOW diet, LOD=3.8 on Ath diet). The QTL range of Hdlq21 spans 34 cM - 60 cM. NZB/BlNJ-derived alleles confer increased HDL cholesterol with additive inheritance.Previously identified QTLs Hdlq1 (66 cM) and Hdlq2 (50 cM) on mouse Chromosome 5 were detected in this study. Hdlq1 is linked to D5Mit161 (LOD=10.1 on CHOW diet, LOD=12.1 on Ath diet) and Hdlq2 is linkedto D5Mit205 (LOD=7.6 on CHOW diet, LOD=10.8 on Ath diet). Scarb1 and Tcf1 map within the QTL interval of Hdlq1 and are potential candidate genes. A novel QTL named Hdlq22 mapped to 18 cM on mouse Chromosome 5 near D5Mit228 (LOD=5.2 on CHOW diet, LOD=7.6 on Ath diet.) Lrpap1 is proposed as a candidate gene for Hdlq22. NZB/BlNJ-derived alleles confer increased HDL cholesterol with additive inheritance at Hdlq1, Hdlq2, and Hdlq22.A female-specific QTL named Hdlq23 mapped to 26 cM on mouse Chromosome 6 nearD6Mit74 (LOD=4.2 on CHOW diet). The QTL range of Hdlq23 spans 12 cM - 32 cM. A second QTL named Hdlq24 mapped to 66 cM near D6Mit259 (LOD=6.3 on CHOW diet). The QTL range of Hdlq24 spans 54 cM - 70 cM. Hdlq24 overlaps with previously identified QTLs Hdlq11 (46 cM) and Hdlq12 (71.2 cM). NZB/BlNJ-derived alleles confer increased HDL cholesterol with additive inheritance at both Hdlq23 and Hdlq24.Hdlq25 maps to 0 cM on mouse Chromosome 8 near D8Mit58 (LOD=4.2 on Ath diet). The QTL range of Hdlq25 spans 0cM - 12 cM. NZB/BlNJ-derived alleles confer increased HDL cholesterol with dominant inheritance.A female-specific locus named Hdlq26 mapped to 70 cM on mouse Chromosome 10 near D10Mit271 (LOD=4.1 on Ath diet). The QTL range of Hdlq26 spans 60 cM - 70 cM.NZB/BlNJ-derived alleles confer increased HDL cholesterol with recessive inheritance. A potential candidate gene for Hdlq26 is Apof.A female-specific locus named Hdlq27 mapped to 48 cM on mouse Chromosome 15 near D15Mit70 (LOD=4.2 on CHOW diet). The QTL range of Hdlq27 spans 44 cM - 60 cM. NZB/BlNJ-derived alleles confer increased HDL cholesterol with recessive inheritance. Hdlq27 overlaps with a previously identified QTL named Pltpq4 (phospholipid transfer protein activity QTL 4). Candidate gene Pparamaps to this region and exhibits 4-fold greater expression in male SM/J on a CHOW diet compared to NZB/BlNJ. Hdlq28 mapped to 26 cM on mouse Chromosome 16 near D16Mit57 (LOD=3.7 on CHOW diet). The QTL range of Hdlq28 spans 0 cM - 60 cM. NZB/BlNJ-derived alleles confer increased HDL cholesterol with dominant inheritance. Apod has been suggested as a candidate gene for Hdlq28.A male-specific locus named Hdlq29 mapped to 36 cM on mouse Chromosome 17 near D17Mit20 (LOD=4.5 on Ath diet). NZB/BlNJ-derived alleles confer increased HDL cholesterol with additive inheritance. Potential candidate genes for Hdlq29 are Abcg5 and Abcg8.Hdlq30 mapped to 48 cM (LOD=4.2 on CHOW diet at D18Mit9) and Hdlq31 mapped to 56 cM (LOD=5.2 cM on Ath diet at D18Mit4) on mouseChromosome 18. The QTL range of Hdlq31 spans 42 cM - 60 cM. A potential candidate gene for Hdlq31 is Lipg. NZB/BlNJ-derived alleles confer increased HDL cholesterol with additive inheritance at both Hdlq30 and Hdlq31.A female-specific locus named Hdlq32 mapped to 26 cM on mouse Chromosome 19 near D19Mit11 (LOD=4.0 on Ath diet). The QTL range of Hdlq32 spans 10 cM - 70 cM. NZB/BlNJ-derived alleles confer increased HDL cholesterol with recessive inheritance. Hdlq32 overlaps with a previously identified QTL named Chab5 (cholesterol absorption 5) at 16 cM. Fas has been proposed as a candidate gene for both Hdlq32 and Chab5. Vldlr is also a potential candidate gene for Hdlq32. |
||||||||||
References |
|
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/10/2024 MGI 6.24 |
|
|