Summary |
|
||||||||||
Variant origin |
|
||||||||||
Variant description |
|
||||||||||
Phenotypes |
View phenotypes and curated references for all genotypes (concatenated display).
|
||||||||||
Expression |
|
||||||||||
Notes |
Candidate Genes
Igf1sl1 is a QTL previously identified in a congenic line named B6.C3-(D6Mit93-D6Mit150). Authors refer to this line as 6T. The congenic carries a C3H/HeJ-derived interval between D6Mit93 (26.3 cM) to D6Mit150 (51 cM) on a C57BL/6J genetic background. The congenic exhibits 30%-50% decreased IGF-1 expression in bone, liver, and fat tissue, and a 20% decrease in serum IGF-1 levels compared to background strain C57BL/6J. IGFBP-2 expression also appears to be decreased in bone. The congenic also exhibits decreased rate of bone formation and significantly increased percent body fat compared to C57BL/6J. Previously QTL, Bmd8, for the phenotype of total femoral volumetric bone mineral density (BMD) and Igf1sl1, for serum IGF-1 were mapped to a mid-dsital region of Chromosome 6 in a cross between C3H/HeJ (C3H) and C57BL/6J (B6) inbred mouse strains [J:78754 and J:66640, respectively]. Mapping and Phenotype information for this QTL, its variants and associated markersJ:66640Phenotypically extreme female animals from a (C57BL/6J x C3H/HeJ)F2 intercross were genotyped at 114 polymorphic loci at a resolution of 14 cM to identify QTLs associated with serum IGF-1 levels and bone mineral density (BMD). Parental strain C3H/HeJ exhibits increased serum IGF-1 and increased BMD compared to C57BL/6J. Since osteoblasts from C3H/HeJ animals secrete more IGF-1 compared to osteoblasts from C57BL/6J animals a correlation between IGF-1 levels and BMD was investigated. 682 F2 female animals were used in the final analysis. Significant linkage mapped to 51 cM on mouse Chromosome 6 near D6Mit150 (LOD=9). This locus in named Igf1sl1 (IGF-1 serum level 1). C3H/HeJ-derived alleles confer decreased serum IGF-1 at this locus. A correlation betweenserum IGF-1 levels and BMD was observed for Igf1sl1.Igf1sl2 mapped to 51 cM on mouse Chromosome 10 near D10Mit95 (LOD=4.5). C3H/HeJ-derived alleles confer increased serum IGF-1 at this locus. Correlation between serum IGF-1 levels and BMD was not observed for Igf1sl2. The Igf1 (48 cM) gene maps very close to this locus, just 3 cM proximal to Igf1sl2.Igf1sl3 mapped to 32 cM on mouse Chromosome 15 near D15Mit209 (LOD=4.4). C3H/HeJ-derived alleles confer increased serum IGF-1 at this locus. Correlationbetween serum IGF-1 levels and BMD was not observed for Igf1sl1.A fourth QTL, Igf1sl4, was identified via pairwise interaction analysis. Ifg1sl4 maps to 1.1 cM on mouse Chromosome 11 near D11Mit71 and is epistatic to Igf1sl1 on mouse Chromosome 6. Homozygosity for C3H/HeJ-derived alleles at Igf1sl4 negates the IGF-1 lowering effect of Igf1sl1. When Igf1sl4 is homozygous or heterozygous for C57BL/6J-derived alleles the effect of Igfsl1 can be observed. Correlation between serum IGF-1 levels and BMD wasobserved for Igf1sl4. Potential candidate genes mapping near Igf1sl4 are Igfbp1 (1.3 cM) and Igfbp3 (1.35 cM).To test the theory that C3H/HeJ-derived alleles at Igfsl1 and C57BL/6J-derived alleles at Igfsl4 impact serum IGF-1 and BMD, a congenic line (B6.C3H-6) carrying C3H/HeJ-derived DNA on chromosome 6 on the genetic background of C57BL/76J was studied. Congenic animals exhibit a 16% decrease in serum IGF-1 and a 4% decrease in femoral BMD compared to C57BL/6J.J:94512A previously identified QTL named Igf1sl1 was confirmed and fine-mapped in the present study using congenic strain analysis. Igf1sl1 is associated with serum IGF-1 levels and bone mineral density (BMD), and maps to 51 cM on mouse Chromosome 6 in linkage to D6Mit150. The congenic strain that was created carries a C3H/HeJ-derived interval that contains Igf1sl1 on a C57BL/6J genetic background. This congenic strain is called B6.C3-(D6Mit93-D6Mit150) and the C3H/HeJ-derived region spans approximately 26.3 cM to 51 cM. Although donor strain C3H/HeJ exhibits increased serum IGF-1 levels (25%-30% higher) compared to background strain C57BL/6J, the Igf1sl1 locus confers decreased serum IGF-1 levels when the alleles are from C3H/HeJ. Therefore, congenic strain B6.C3-(D6Mit93-D6Mit150) is expected to have lower serum IGF-1 levels compared to C57BL/6J and that is what is observed (serum IGF-1 is 15%-25% decreased). The congenic also exhibits decreased rate of bone formation and significantly reduced trabecularandcortical BMD of the L5 vertebrae compared to C57BL/6J.DNA microarray analysis and Q-PCR (quantitative real-time PCR) were used to identify candidate genes within the Igf1sl1 interval. Pparg and Cav3 map within the Ifg1sl1 interval and are differentially expressed between congenic B6.C3-(D6Mit93-D6Mit150) and parental C57BL/6J.J:112375Igf1sl1 is previously identified QTL on mouse Chromosome 6 affecting levels of serum IGF-1. A congenic line named B6.C3-(D6Mit93-D6Mit150) carries a C3H/HeJ-derived interval encompassing Igf1sl1 between D6Mit93 (26.3 cM) to D6Mit150 (51 cM) on a C57BL/6J genetic background. Authors refer to this line as 6T, which is estimated to be approximately 99.8% C57BL/6J at the N9 generation. Congenic females display 11%-21% decreased serum IGF-1 at 6, 8, and 16 weeks of age, and congenic males display 13% decreased serum IGF-1 at 16weeks of age compared to C57BL/6J. Congenic osteoblasts also secreted 40% less IGF-1 compared to C57BL/6J osteoblasts. This study also examined the effects of serum IGF-1 on skeletal phenotypes. Congenic animals display decreased body fat percentage at12 weeks of age compared to C57BL/6J. Female congenic animals at 16 weeks of age display decreased femoral length, periosteal circumference, and total body areal bone mineral density (BMD) compared to C57BL/6J females. Female congenic animalsalso display significantly decreased bone volume fraction and bone thickness in the femur and vertebral bodies between 8-16 weeks of age. It appears that C3H/HeJ-derived alleles at Igf1sl1 affect bone development and acquisition, especially during times of rapid growth around 8-12 weeks of age. |
||||||||||
References |
|
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 11/19/2024 MGI 6.24 |
|
|