Symbol Name ID |
Celf1
CUGBP, Elav-like family member 1 MGI:1342295 |
Age | E0.5 | E1 | E3 | E3.5 | E7.5 | E8.5 | E9 | E9.5 | E10 | E10.5 | E11 | E11.5 | E12 | E12.5 | E13 | E13.5 | E14 | E14.5 | E15 | E16 | E16.5 | E17 | E18.5 | E19 | E | P |
Immunohistochemistry (section) | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | ||||||||||||||||||
In situ RNA (section) | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||||||
Immunohistochemistry (whole mount) | 1 | 1 | 1 | |||||||||||||||||||||||
In situ RNA (whole mount) | 1 | 1 | 1 | 2 | ||||||||||||||||||||||
In situ reporter (knock in) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||||
Western blot | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 9 | |||||||||||||||||
RT-PCR | 1 | 1 | 1 | 1 | 1 | 4 | ||||||||||||||||||||
cDNA clones | 1 | 1 |
Celf1 CUGBP, Elav-like family member 1 (Synonyms: 1600010O03Rik, Brunol2, CUG-BP, Cugbp1, CUG-BP1, D2Wsu101e) | |
Results | Reference |
1* | J:313619 Bedogni F, Hevner RF, Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Front Mol Neurosci. 2021;14:686034 |
4* | J:198234 Blech-Hermoni Y, Stillwagon SJ, Ladd AN, Diversity and conservation of CELF1 and CELF2 RNA and protein expression patterns during embryonic development. Dev Dyn. 2013 Jun;242(6):767-77 |
2* | J:256956 Brinegar AE, Xia Z, Loehr JA, Li W, Rodney GG, Cooper TA, Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions. Elife. 2017 Aug 11;6:e27192 |
3 | J:311486 Chalupnikova K, Solc P, Sulimenko V, Sedlacek R, Svoboda P, An oocyte-specific ELAVL2 isoform is a translational repressor ablated from meiotically competent antral oocytes. Cell Cycle. 2014;13(7):1187-200 |
2* | J:81851 Fowles LF, Bennetts JS, Berkman JL, Williams E, Koopman P, Teasdale RD, Wicking C, Genomic screen for genes involved in mammalian craniofacial development. Genesis. 2003 Feb;35(2):73-87 |
2* | J:142671 Kalsotra A, Xiao X, Ward AJ, Castle JC, Johnson JM, Burge CB, Cooper TA, A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20333-8 |
2* | J:50869 Ko MSH, Threat TA, Wang X, Horton JH, Cui Y, Pryor E, Paris J , Wells-Smith J , Kitchen JR , Rowe LB , Eppig J , Satoh T , Brant L , Fujiwara H , Yotsumoto S , Nakashima H, Genome-wide mapping of unselected transcripts from extraembryonic tissue of 7.5-day mouse embryos reveals enrichment in the t-complex and under-representation on the X chromosome. Hum Mol Genet. 1998 Nov;7(12):1967-78 |
11* | J:118291 Kress C, Gautier-Courteille C, Osborne HB, Babinet C, Paillard L, Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice. Mol Cell Biol. 2007 Feb;27(3):1146-57 |
2 | J:134914 Kuyumcu-Martinez NM, Wang GS, Cooper TA, Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell. 2007 Oct 12;28(1):68-78 |
2* | J:67386 Ladd AN, Charlet N, Cooper TA, The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol. 2001 Feb;21(4):1285-96 |
2 | J:98810 Ladd AN, Stenberg MG, Swanson MS, Cooper TA, Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev Dyn. 2005 Apr 13;233(3):783-793 |
3 | J:286293 Li M, Zhuang Y, Batra R, Thomas JD, Li M, Nutter CA, Scotti MM, Carter HA, Wang ZJ, Huang XS, Pu CQ, Swanson MS, Xie W, HNRNPA1-induced spliceopathy in a transgenic mouse model of myotonic dystrophy. Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5472-5477 |
2 | J:112061 Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA, Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet. 2006 Jul 1;15(13):2087-97 |
4* | J:103446 McKee AE, Minet E, Stern C, Riahi S, Stiles CD, Silver PA, A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev Biol. 2005 Jul 20;5:14 |
4 | J:287170 Popovitchenko T, Park Y, Page NF, Luo X, Krsnik Z, Liu Y, Salamon I, Stephenson JD, Kraushar ML, Volk NL, Patel SM, Wijeratne HRS, Li D, Suthar KS, Wach A, Sun M, Arnold SJ, Akamatsu W, Okano H, Paillard L, Zhang H, Buyske S, Kostovic I, De Rubeis S, Hart RP, Rasin MR, Translational derepression of Elavl4 isoforms at their alternative 5' UTRs determines neuronal development. Nat Commun. 2020 Apr 3;11(1):1674 |
3 | J:314894 Ravel-Chapuis A, Crawford TE, Blais-Crepeau ML, Belanger G, Richer CT, Jasmin BJ, The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc-dependent mechanism. Mol Biol Cell. 2014 Nov 15;25(23):3765-78 |
5* | J:235603 Shen X, Soibam B, Benham A, Xu X, Chopra M, Peng X, Yu W, Bao W, Liang R, Azares A, Liu P, Gunaratne PH, Mercola M, Cooney AJ, Schwartz RJ, Liu Y, miR-322/-503 cluster is expressed in the earliest cardiac progenitor cells and drives cardiomyocyte specification. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9551-6 |
9 | J:261250 Siddam AD, Gautier-Courteille C, Perez-Campos L, Anand D, Kakrana A, Dang CA, Legagneux V, Mereau A, Viet J, Gross JM, Paillard L, Lachke SA, The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development. PLoS Genet. 2018 Mar;14(3):e1007278 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/10/2024 MGI 6.24 |
|
|