Symbol Name ID |
Atoh7
atonal bHLH transcription factor 7 MGI:1355553 |
Age | E1.5 | E2 | E2.5 | E3 | E3.5 | E4.5 | E8.5 | E9 | E9.5 | E10 | E10.5 | E11 | E11.5 | E12 | E12.5 | E13 | E13.5 | E14 | E14.5 | E15 | E15.5 | E16 | E16.5 | E17 | E17.5 | E18 | E18.5 | E19.5 | E20 | E | P |
Immunohistochemistry (section) | 3 | 5 | 4 | 1 | 2 | 1 | 1 | 2 | |||||||||||||||||||||||
In situ RNA (section) | 1 | 1 | 1 | 12 | 2 | 16 | 1 | 16 | 3 | 19 | 1 | 10 | 1 | 8 | 3 | 1 | 5 | 6 | |||||||||||||
In situ RNA (whole mount) | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | |||||||||||||||||||||
In situ reporter (knock in) | 1 | 2 | 6 | 1 | 10 | 1 | 11 | 7 | 6 | 1 | 1 | 4 | 2 | 1 | 5 | ||||||||||||||||
Northern blot | 1 | 1 | 2 | ||||||||||||||||||||||||||||
Western blot | 1 | 1 | |||||||||||||||||||||||||||||
RT-PCR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 1 | 3 | 1 | 11 | 1 | 3 | 1 | 4 | 2 | 2 | 2 | 1 | 1 | 16 | |||||||
cDNA clones | 1 | 1 | |||||||||||||||||||||||||||||
RNase protection | 1 |
Atoh7 atonal bHLH transcription factor 7 (Synonyms: bHLHa13, Math5) | |
Results | Reference |
1 | J:314666 Balasubramanian R, Min X, Quinn PMJ, Giudice QL, Tao C, Polanco K, Makrides N, Peregrin J, Bouaziz M, Mao Y, Wang Q, da Costa BL, Buenaventura D, Wang F, Ma L, Tsang SH, Fabre PJ, Zhang X, Phase transition specified by a binary code patterns the vertebrate eye cup. Sci Adv. 2021 Nov 12;7(46):eabj9846 |
1 | J:287985 Bosze B, Moon MS, Kageyama R, Brown NL, Simultaneous Requirements for Hes1 in Retinal Neurogenesis and Optic Cup-Stalk Boundary Maintenance. J Neurosci. 2020 Feb 12;40(7):1501-1513 |
1 | J:341148 Bosze B, Suarez-Navarro J, Cajias I, Brzezinski Iv JA, Brown NL, Notch pathway mutants do not equivalently perturb mouse embryonic retinal development. PLoS Genet. 2023 Sep;19(9):e1010928 |
1 | J:303632 Bosze B, Suarez-Navarro J, Soofi A, Lauderdale JD, Dressler GR, Brown NL, Multiple roles for Pax2 in the embryonic mouse eye. Dev Biol. 2021 Apr;472:18-29 |
11 | J:50518 Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T, Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development. 1998 Dec;125(23):4821-33 |
6 | J:70746 Brown NL, Patel S, Brzezinski J, Glaser T, Math5 is required for retinal ganglion cell and optic nerve formation. Development. 2001 Jul;128(13):2497-508 |
2 | J:175804 Brzezinski JA 4th, Kim EJ, Johnson JE, Reh TA, Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development. 2011 Aug;138(16):3519-31 |
17 | J:184871 Brzezinski JA 4th, Prasov L, Glaser T, Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Dev Biol. 2012 May 15;365(2):395-413 |
3 | J:159104 Cai Z, Feng GS, Zhang X, Temporal requirement of the protein TyrosinePhosphatase Shp2 in establishing the neuronal fatein early retinal development. J Neurosci. 2010 Mar 17;30(11):4110-9 |
1 | J:214343 Cai Z, Grobe K, Zhang X, Role of heparan sulfate proteoglycans in optic disc and stalk morphogenesis. Dev Dyn. 2014 Oct;243(10):1310-6 |
1 | J:198655 Cai Z, Tao C, Li H, Ladher R, Gotoh N, Feng GS, Wang F, Zhang X, Deficient FGF signaling causes optic nerve dysgenesis and ocular coloboma. Development. 2013 Jul;140(13):2711-23 |
1 | J:198381 Carbe C, Garg A, Cai Z, Li H, Powers A, Zhang X, An allelic series at the paired box gene 6 (Pax6) locus reveals the functional specificity of Pax genes. J Biol Chem. 2013 Apr 26;288(17):12130-41 |
1 | J:294396 Chang KC, Sun C, Cameron EG, Madaan A, Wu S, Xia X, Zhang X, Tenerelli K, Nahmou M, Knasel CM, Russano KR, Hertz J, Goldberg JL, Opposing Effects of Growth and Differentiation Factors in Cell-Fate Specification. Curr Biol. 2019 Jun 17;29(12):1963-1975.e5 |
1 | J:356425 Chen S, Li H, Gaudenz K, Paulson A, Guo F, Trimble R, Peak A, Seidel C, Deng C, Furuta Y, Xie T, Defective FGF signaling causes coloboma formation and disrupts retinal neurogenesis. Cell Res. 2013 Feb;23(2):254-73 |
1 | J:239874 Christ A, Christa A, Klippert J, Eule JC, Bachmann S, Wallace VA, Hammes A, Willnow TE, LRP2 Acts as SHH Clearance Receptor to Protect the Retinal Margin from Mitogenic Stimuli. Dev Cell. 2015 Oct 12;35(1):36-48 |
4 | J:171198 Cwinn MA, Mazerolle C, McNeill B, Ringuette R, Thurig S, Hui CC, Wallace VA, Suppressor of fused is required to maintain the multipotency of neural progenitor cells in the retina. J Neurosci. 2011 Mar 30;31(13):5169-80 |
1 | J:309209 Dhomen N, Da Rocha Dias S, Hayward R, Ogilvie L, Hedley D, Delmas V, McCarthy A, Henderson D, Springer CJ, Pritchard C, Larue L, Marais R, Inducible expression of (V600E) Braf using tyrosinase-driven Cre recombinase results in embryonic lethality. Pigment Cell Melanoma Res. 2010 Feb;23(1):112-20 |
2 | J:197162 Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franze AM, Puelles L, Rijli FM, Studer M, Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet. 2013;9(2):e1003249 |
1 | J:271140 Diacou R, Zhao Y, Zheng D, Cvekl A, Liu W, Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Rep. 2018 Nov 27;25(9):2510-2523.e4 |
1 | J:147448 Ding Q, Chen H, Xie X, Libby RT, Tian N, Gan L, BARHL2 differentially regulates the development of retinal amacrine and ganglion neurons. J Neurosci. 2009 Apr 1;29(13):3992-4003 |
4* | J:206224 Dixit R, Tachibana N, Touahri Y, Zinyk D, Logan C, Schuurmans C, Gene expression is dynamically regulated in retinal progenitor cells prior to and during overt cellular differentiation. Gene Expr Patterns. 2014 Jan;14(1):42-54 |
3* | J:225906 El-Danaf RN, Krahe TE, Dilger EK, Bickford ME, Fox MA, Guido W, Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input. Neural Dev. 2015;10:19 |
1 | J:144652 Elliott J, Jolicoeur C, Ramamurthy V, Cayouette M, Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron. 2008 Oct 9;60(1):26-39 |
1* | J:182786 Feng L, Eisenstat DD, Chiba S, Ishizaki Y, Gan L, Shibasaki K, Brn-3b inhibits generation of amacrine cells by binding to and negatively regulating DLX1/2 in developing retina. Neuroscience. 2011 Nov 10;195:9-20 |
3 | J:119663 Feng L, Xie X, Joshi PS, Yang Z, Shibasaki K, Chow RL, Gan L, Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina. Development. 2006 Dec;133(24):4815-25 |
2 | J:168595 Feng L, Xie ZH, Ding Q, Xie X, Libby RT, Gan L, MATH5 controls the acquisition of multiple retinal cell fates. Mol Brain. 2010;3:36 |
3* | J:339296 Fries M, Brown TW, Jolicoeur C, Boulan B, Boudreau-Pinsonneault C, Javed A, Abram P, Cayouette M, Pou3f1 orchestrates a gene regulatory network controlling contralateral retinogeniculate projections. Cell Rep. 2023 Aug 16;42(8):112985 |
4* | J:151244 Fu X, Kiyama T, Li R, Russell M, Klein WH, Mu X, Epitope-tagging Math5 and Pou4f2: New tools to study retinal ganglion cell development in the mouse. Dev Dyn. 2009 May 20;238(9):2309-2317 |
2 | J:115047 Fu X, Sun H, Klein WH, Mu X, Beta-catenin is essential for lamination but not neurogenesis in mouse retinal development. Dev Biol. 2006 Nov 15;299(2):424-37 |
1 | J:115271 Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J, Long Q, Kawaguchi Y, Edlund H, Macdonald RJ, Furukawa T, Fujikado T, Magnuson MA, Xiang M, Wright CV, Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development. 2006 Nov;133(22):4439-50 |
2 | J:334110 Ge Y, Chen X, Nan N, Bard J, Wu F, Yergeau D, Liu T, Wang J, Mu X, Key transcription factors influence the epigenetic landscape to regulate retinal cell differentiation. Nucleic Acids Res. 2023 Mar 21;51(5):2151-2176 |
4* | J:297659 Ge Y, Wu F, Cheng M, Bard J, Mu X, Two new genetically modified mouse alleles labeling distinct phases of retinal ganglion cell development by fluorescent proteins. Dev Dyn. 2020 Aug 2; |
2* | J:176194 Ghiasvand NM, Rudolph DD, Mashayekhi M, Brzezinski JA 4th, Goldman D, Glaser T, Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat Neurosci. 2011 May;14(5):578-86 |
1 | J:249145 Goetz JJ, Laboissonniere LA, Wester AK, Lynch MR, Trimarchi JM, Polo-Like Kinase 3 Appears Dispensable for Normal Retinal Development Despite Robust Embryonic Expression. PLoS One. 2016;11(3):e0150878 |
1* | J:309183 Gomes AL, Matos-Rodrigues GE, Frappart PO, Martins RAP, RINT1 Loss Impairs Retinogenesis Through TRP53-Mediated Apoptosis. Front Cell Dev Biol. 2020;8:711 |
1 | J:199799 Gordon PJ, Yun S, Clark AM, Monuki ES, Murtaugh LC, Levine EM, Lhx2 balances progenitor maintenance with neurogenic output and promotes competence state progression in the developing retina. J Neurosci. 2013 Jul 24;33(30):12197-207 |
2* | J:91257 Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk DI, Tsung EF, Cai Z, Alberta JA, Cheng LP, Liu Y, Stenman JM, Valerius MT, Billings N, Kim HA, Greenberg ME, McMahon AP, Rowitch DH, Stiles CD, Ma Q, Mouse Brain Organization Revealed Through Direct Genome-Scale TF Expression Analysis. Science. 2004 Dec 24;306(5705):2255-2257 |
1* | J:171409 GUDMAP Consortium, GUDMAP: the GenitoUrinary Development Molecular Anatomy Project. www.gudmap.org. 2004; |
7* | J:140465 Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P, Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell. 2010 Apr 20;18(4):675-85 |
1 | J:94374 Horsford DJ, Nguyen MT, Sellar GC, Kothary R, Arnheiter H, McInnes RR, Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development. 2005 Jan;132(1):177-87 |
8 | J:160260 Hufnagel RB, Le TT, Riesenberg AL, Brown NL, Neurog2 controls the leading edge of neurogenesis in the mammalian retina. Dev Biol. 2010 Apr 15;340(2):490-503 |
3 | J:242258 Iida A, Iwagawa T, Baba Y, Satoh S, Mochizuki Y, Nakauchi H, Furukawa T, Koseki H, Murakami A, Watanabe S, Roles of histone H3K27 trimethylase Ezh2 in retinal proliferation and differentiation. Dev Neurobiol. 2015 Sep;75(9):947-60 |
1* | J:74573 Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R, Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development. 2002 Feb;129(4):831-42 |
2 | J:306209 Iwagawa T, Honda H, Watanabe S, Jmjd3 Plays Pivotal Roles in the Proper Development of Early-Born Retinal Lineages: Amacrine, Horizontal, and Retinal Ganglion Cells. Invest Ophthalmol Vis Sci. 2020 Sep 1;61(11):43 |
3 | J:160337 Jiang SY, Wang JT, Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation. Biochem Biophys Res Commun. 2010 May 14;395(4):524-9 |
1 | J:199663 Jiang Y, Ding Q, Xie X, Libby RT, Lefebvre V, Gan L, Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells. J Biol Chem. 2013 Jun 21;288(25):18429-38 |
1 | J:279675 Jones I, Hagglund AC, Carlsson L, Reduced mTORC1-signalling in retinal progenitor cells leads to visual pathway dysfunction. Biol Open. 2019 Aug 1;8(8):bio044370 |
1 | J:226834 Jones I, Hagglund AC, Tornqvist G, Nord C, Ahlgren U, Carlsson L, A novel mouse model of tuberous sclerosis complex (TSC): eye-specific Tsc1-ablation disrupts visual-pathway development. Dis Model Mech. 2015 Dec 1;8(12):1517-29 |
6 | J:99244 Kim J, Wu HH, Lander AD, Lyons KM, Matzuk MM, Calof AL, GDF11 controls the timing of progenitor cell competence in developing retina. Science. 2005 Jun 24;308(5730):1927-30 |
1 | J:222438 Klimova L, Antosova B, Kuzelova A, Strnad H, Kozmik Z, Onecut1 and Onecut2 transcription factors operate downstream of Pax6 to regulate horizontal cell development. Dev Biol. 2015 Jun 1;402(1):48-60 |
1 | J:208421 Klimova L, Kozmik Z, Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development. 2014 Mar;141(6):1292-302 |
1 | J:266268 Kowalchuk AM, Maurer KA, Shoja-Taheri F, Brown NL, Requirements for Neurogenin2 during mouse postnatal retinal neurogenesis. Dev Biol. 2018 Oct 15;442(2):220-235 |
6 | J:110600 Le TT, Wroblewski E, Patel S, Riesenberg AN, Brown NL, Math5 is required for both early retinal neuron differentiation and cell cycle progression. Dev Biol. 2006 Jul 15;295(2):764-78 |
3* | J:70735 Lee CS, May NR, Fan CM, Transdifferentiation of the ventral retinal pigmented epithelium to neural retina in the growth arrest specific gene 1 mutant. Dev Biol. 2001 Aug 1;236(1):17-29 |
7 | J:100591 Lee HY, Wroblewski E, Philips GT, Stair CN, Conley K, Reedy M, Mastick GS, Brown NL, Multiple requirements for Hes 1 during early eye formation. Dev Biol. 2005 Aug 15;284(2):464-78 |
1 | J:92622 Li S, Mo Z, Yang X, Price SM, Shen MM, Xiang M, Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron. 2004 Sep 16;43(6):795-807 |
3 | J:332136 Li X, Gordon PJ, Gaynes JA, Fuller AW, Ringuette R, Santiago CP, Wallace V, Blackshaw S, Li P, Levine EM, Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis. Elife. 2022 Dec 2;11 |
1 | J:82686 Liu J, Wilson S, Reh T, BMP receptor 1b is required for axon guidance and cell survival in the developing retina. Dev Biol. 2003 Apr 1;256(1):34-48 |
1 | J:181993 Luo H, Jin K, Xie Z, Qiu F, Li S, Zou M, Cai L, Hozumi K, Shima DT, Xiang M, Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):E553-62 |
1 | J:160876 Ma L, Cantrup R, Varrault A, Colak D, Klenin N, Gotz M, McFarlane S, Journot L, Schuurmans C, Zac1 functions through TGFbetaII to negatively regulate cell number in the developing retina. Neural Dev. 2007;2:11 |
2* | J:160708 Macgregor S, Hewitt AW, Hysi PG, Ruddle JB, Medland SE, Henders AK, Gordon SD, Andrew T, McEvoy B, Sanfilippo PG, Carbonaro F, Tah V, Li YJ, Bennett SL, Craig JE, Montgomery GW, Tran-Viet KN, Brown NL, Spector TD, Martin NG, Young TL, Hammond CJ, Mackey DA, Genome-wide association identifies ATOH7 as a major gene determining human optic disc size. Hum Mol Genet. 2010 Jul 1;19(13):2716-24 |
2 | J:194077 Mao CA, Cho JH, Wang J, Gao Z, Pan P, Tsai WW, Frishman LJ, Klein WH, Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7. Development. 2013 Feb 1;140(3):541-51 |
1 | J:167071 Mao CA, Tsai WW, Cho JH, Pan P, Barton MC, Klein WH, Neuronal transcriptional repressor REST suppresses an Atoh7-independent program for initiating retinal ganglion cell development. Dev Biol. 2011 Jan 1;349(1):90-9 |
1 | J:141248 Mao CA, Wang SW, Pan P, Klein WH, Rewiring the retinal ganglion cell gene regulatory network: Neurod1 promotes retinal ganglion cell fate in the absence of Math5. Development. 2008 Oct;135(20):3379-88 |
1 | J:264387 Maurer KA, Kowalchuk A, Shoja-Taheri F, Brown NL, Integral bHLH factor regulation of cell cycle exit and RGC differentiation. Dev Dyn. 2018 May 17; |
2 | J:214082 Maurer KA, Riesenberg AN, Brown NL, Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development. 2014 Aug;141(16):3243-54 |
5 | J:295965 Miesfeld JB, Ghiasvand NM, Marsh-Armstrong B, Marsh-Armstrong N, Miller EB, Zhang P, Manna SK, Zawadzki RJ, Brown NL, Glaser T, The Atoh7 remote enhancer provides transcriptional robustness during retinal ganglion cell development. Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21690-21700 |
7* | J:260417 Miesfeld JB, Glaser T, Brown NL, The dynamics of native Atoh7 protein expression during mouse retinal histogenesis, revealed with a new antibody. Gene Expr Patterns. 2018 Jan;27:114-121 |
4* | J:268318 Miesfeld JB, Moon MS, Riesenberg AN, Contreras AN, Kovall RA, Brown NL, Rbpj direct regulation of Atoh7 transcription in the embryonic mouse retina. Sci Rep. 2018 Jul 5;8(1):10195 |
1* | J:278612 Miltner AM, Mercado-Ayon Y, Cheema SK, Zhang P, Zawadzki RJ, La Torre A, A Novel Reporter Mouse Uncovers Endogenous Brn3b Expression. Int J Mol Sci. 2019 Jun 14;20(12):2903 |
1 | J:119026 Morcillo J, Martinez-Morales JR, Trousse F, Fermin Y, Sowden JC, Bovolenta P, Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH. Development. 2006 Aug;133(16):3179-90 |
1 | J:97089 Mu X, Fu X, Sun H, Liang S, Maeda H, Frishman LJ, Klein WH, Ganglion cells are required for normal progenitor- cell proliferation but not cell-fate determination or patterning in the developing mouse retina. Curr Biol. 2005 Mar 29;15(6):525-30 |
1 | J:98488 Mui SH, Kim JW, Lemke G, Bertuzzi S, Vax genes ventralize the embryonic eye. Genes Dev. 2005 May 15;19(10):1249-59 |
2 | J:171526 Murali D, Kawaguchi-Niida M, Deng CX, Furuta Y, Smad4 Is Required Predominantly in the Developmental Processes Dependent on the BMP Branch of the TGF-{beta} Signaling System in the Embryonic Mouse Retina. Invest Ophthalmol Vis Sci. 2011;52(6):2930-7 |
1* | J:151457 Nelson BR, Hartman BH, Ray CA, Hayashi T, Bermingham-McDonogh O, Reh TA, Acheate-scute like 1 (Ascl1) is required for normal delta-like (Dll) gene expression and notch signaling during retinal development. Dev Dyn. 2009 Feb 2;238(9):2163-2178 |
1 | J:206963 Orieux G, Picault L, Slembrouck A, Roger JE, Guillonneau X, Sahel JA, Saule S, McPherson JP, Goureau O, Involvement of Bcl-2-associated transcription factor 1 in the differentiation of early-born retinal cells. J Neurosci. 2014 Jan 22;34(4):1530-41 |
1 | J:142509 Oron-Karni V, Farhy C, Elgart M, Marquardt T, Remizova L, Yaron O, Xie Q, Cvekl A, Ashery-Padan R, Dual requirement for Pax6 in retinal progenitor cells. Development. 2008 Dec;135(24):4037-47 |
1 | J:119651 Pan Y, Woodbury A, Esko JD, Grobe K, Zhang X, Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development. Development. 2006 Dec;133(24):4933-44 |
2* | J:96667 Philips GT, Stair CN, Young Lee H, Wroblewski E, Berberoglu MA, Brown NL, Mastick GS, Precocious retinal neurons: Pax6 controls timing of differentiation and determination of cell type. Dev Biol. 2005 Mar 15;279(2):308-21 |
9 | J:164018 Prasov L, Brown NL, Glaser T, A critical analysis of Atoh7 (Math5) mRNA splicing in the developing mouse retina. PLoS One. 2010;5(8) |
4 | J:186563 Prasov L, Glaser T, Pushing the envelope of retinal ganglion cell genesis: Context dependent function of Math5 (Atoh7). Dev Biol. 2012 Aug 15;368(2):214-30 |
1 | J:133489 Qiu F, Jiang H, Xiang M, A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors. J Neurosci. 2008 Mar 26;28(13):3392-403 |
2 | J:154061 Riesenberg AN, Liu Z, Kopan R, Brown NL, Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina. J Neurosci. 2009 Oct 14;29(41):12865-77 |
1 | J:149456 Rocha SF, Lopes SS, Gossler A, Henrique D, Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev Biol. 2009 Apr 1;328(1):54-65 |
2* | J:93571 Rowan S, Chen CM, Young TL, Fisher DE, Cepko CL, Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development. 2004 Oct;131(20):5139-52 |
2 | J:149518 Sakagami K, Gan L, Yang XJ, Distinct effects of Hedgehog signaling on neuronal fate specification and cell cycle progression in the embryonic mouse retina. J Neurosci. 2009 May 27;29(21):6932-44 |
12 | J:132603 Saul SM, Brzezinski JA 4th, Altschuler RA, Shore SE, Rudolph DD, Kabara LL, Halsey KE, Hufnagel RB, Zhou J, Dolan DF, Glaser T, Math5 expression and function in the central auditory system. Mol Cell Neurosci. 2008 Jan;37(1):153-69 |
1 | J:166950 Shi M, Zheng MH, Liu ZR, Hu ZL, Huang Y, Chen JY, Zhao G, Han H, Ding YQ, DCC is specifically required for the survival of retinal ganglion and displaced amacrine cells in the developing mouse retina. Dev Biol. 2010 Dec 1;348(1):87-96 |
8 | J:154449 Skowronska-Krawczyk D, Chiodini F, Ebeling M, Alliod C, Kundzewicz A, Castro D, Ballivet M, Guillemot F, Matter-Sadzinski L, Matter JM, Conserved regulatory sequences in Atoh7 mediate non-conserved regulatory responses in retina ontogenesis. Development. 2009 Nov;136(22):3767-77 |
1 | J:123969 Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S, The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci. 2007 Aug 1;120(Pt 15):2498-506 |
1 | J:108452 Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH, SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 2006 May 1;20(9):1187-202 |
5* | J:215487 Thompson CL, Ng L, Menon V, Martinez S, Lee CK, Glattfelder K, Sunkin SM, Henry A, Lau C, Dang C, Garcia-Lopez R, Martinez-Ferre A, Pombero A, Rubenstein JL, Wakeman WB, Hohmann J, Dee N, Sodt AJ, Young R, Smith K, Nguyen TN, Kidney J, Kuan L, Jeromin A,Kaykas A, Miller J, Page D, Orta G, Bernard A, Riley Z, Smith S, Wohnoutka P, Hawrylycz MJ, Puelles L, Jones AR, A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron. 2014 Jul 16;83(2):309-23 |
1* | J:122989 Visel A, Thaller C, Eichele G, GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D552-6 |
1 | J:255944 Wang Q, Marcucci F, Cerullo I, Mason C, Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm. eNeuro. 2016 Nov-Dec;3(6):ENEURO.0169-16.2016 |
4 | J:67382 Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L, Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 2001 Jan 1;15(1):24-9 |
2 | J:304969 Wu F, Bard JE, Kann J, Yergeau D, Sapkota D, Ge Y, Hu Z, Wang J, Liu T, Mu X, Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas. Nat Commun. 2021 Mar 5;12(1):1465 |
3* | J:183957 Wu F, Sapkota D, Li R, Mu X, Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol. 2012 Apr 1;520(5):952-69 |
1 | J:243794 Yan N, Cheng L, Cho K, Malik MT, Xiao L, Guo C, Yu H, Zhu R, Rao RC, Chen DF, Postnatal onset of retinal degeneration by loss of embryonic Ezh2 repression of Six1. Sci Rep. 2016 Sep 28;6:33887 |
7* | J:86669 Yang Z, Ding K, Pan L, Deng M, Gan L, Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol. 2003 Dec 1;264(1):240-54 |
2 | J:336178 Yao SQ, Wang M, Liang JJ, Ng TK, Cen LP, Retinal transcriptome of neonatal mice after optic nerve injury. PLoS One. 2023;18(5):e0286344 |
4 | J:241572 Zhang Q, Zagozewski J, Cheng S, Dixit R, Zhang S, de Melo J, Mu X, Klein WH, Brown NL, Wigle JT, Schuurmans C, Eisenstat DD, Regulation of Brn3b by DLX1 and DLX2 is required for retinal ganglion cell differentiation in the vertebrate retina. Development. 2017 May 01;144(9):1698-1711 |
3 | J:197830 Zhang R, Huang H, Cao P, Wang Z, Chen Y, Pan Y, Sma- and Mad-related protein 7 (Smad7) is required for embryonic eye development in the mouse. J Biol Chem. 2013 Apr 12;288(15):10275-85 |
1* | J:73070 Zhao S, Hung FC, Colvin JS, White A, Dai W, Lovicu FJ, Ornitz DM, Overbeek PA, Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development. 2001 Dec;128(24):5051-60 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/17/2024 MGI 6.24 |
|
|