Symbol Name ID |
Kat6b
K(lysine) acetyltransferase 6B MGI:1858746 |
Age | E1.5 | E2 | E2.5 | E3 | E3.5 | E4.5 | E9 | E9.5 | E10.5 | E11.5 | E12.5 | E13.5 | E14.5 | E15.5 | E16.5 | E17.5 | P |
In situ RNA (section) | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 1 | 1 | 2 | |||||||
In situ RNA (whole mount) | 1 | 2 | 1 | 2 | |||||||||||||
In situ reporter (knock in) | 1 | 2 | 2 | 1 | 1 | 1 | |||||||||||
Northern blot | 1 | 2 | |||||||||||||||
RT-PCR | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
cDNA clones | 1 |
Kat6b K(lysine) acetyltransferase 6B (Synonyms: B130044K16Rik, monocytic leukemia, Morf, Myst4, qkf, querkopf) | |
Results | Reference |
1* | J:313619 Bedogni F, Hevner RF, Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Front Mol Neurosci. 2021;14:686034 |
1 | J:358585 Bergamasco MI, Abeysekera W, Garnham AL, Hu Y, Li-Wai-Suen CS, Sheikh BN, Smyth GK, Thomas T, Voss AK, KAT6B is required for histone 3 lysine 9 acetylation and SOX gene expression in the developing brain. Life Sci Alliance. 2025 Feb;8(2) |
5* | J:191385 Clayton-Smith J, O'Sullivan J, Daly S, Bhaskar S, Day R, Anderson B, Voss AK, Thomas T, Biesecker LG, Smith P, Fryer A, Chandler KE, Kerr B, Tassabehji M, Lynch SA, Krajewska-Walasek M, McKee S, Smith J, Sweeney E, Mansour S, Mohammed S, Donnai D, BlackG, Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet. 2011 Nov 11;89(5):675-81 |
1* | J:266522 Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, Rubenstein JLR, Hevner RF, The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6--> Tbr2--> Tbr1. Front Neurosci. 2018;12:571 |
2* | J:91257 Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk DI, Tsung EF, Cai Z, Alberta JA, Cheng LP, Liu Y, Stenman JM, Valerius MT, Billings N, Kim HA, Greenberg ME, McMahon AP, Rowitch DH, Stiles CD, Ma Q, Mouse Brain Organization Revealed Through Direct Genome-Scale TF Expression Analysis. Science. 2004 Dec 24;306(5705):2255-2257 |
1* | J:171409 GUDMAP Consortium, GUDMAP: the GenitoUrinary Development Molecular Anatomy Project. www.gudmap.org. 2004; |
7* | J:140465 Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P, Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell. 2010 Apr 20;18(4):675-85 |
4* | J:178264 Kraft M, Cirstea IC, Voss AK, Thomas T, Goehring I, Sheikh BN, Gordon L, Scott H, Smyth GK, Ahmadian MR, Trautmann U, Zenker M, Tartaglia M, Ekici A, Reis A, Dorr HG, Rauch A, Thiel CT, Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J Clin Invest. 2011 Sep 1;121(9):3479-91 |
2* | J:197289 Sheikh BN, Dixon MP, Thomas T, Voss AK, Querkopf is a key marker of self-renewal and multipotency of adult neural stem cells. J Cell Sci. 2012 Jan 15;125(Pt 2):295-309 |
1 | J:182258 Taher L, Collette NM, Murugesh D, Maxwell E, Ovcharenko I, Loots GG, Global gene expression analysis of murine limb development. PLoS One. 2011;6(12):e28358 |
2* | J:174767 Tang F, Barbacioru C, Nordman E, Bao S, Lee C, Wang X, Tuch BB, Heard E, Lao K, Surani MA, Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS One. 2011;6(6):e21208 |
4 | J:88399 Thomas T, Voss AK, Querkopf, a histone acetyltransferase, is essential for embryonic neurogenesis. Front Biosci. 2004 Jan 1;9:24-31 |
13* | J:62161 Thomas T, Voss AK, Chowdhury K, Gruss P, Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Development. 2000 Jun;127(12):2537-48 |
1* | J:190636 Wiese CB, Ireland S, Fleming NL, Yu J, Valerius MT, Georgas K, Chiu HS, Brennan J, Armstrong J, Little MH, McMahon AP, Southard-Smith EM, A genome-wide screen to identify transcription factors expressed in pelvic ganglia of the lower urinary tract. Front Neurosci. 2012;6:130 |
1* | J:156017 Yokoyama S, Ito Y, Ueno-Kudoh H, Shimizu H, Uchibe K, Albini S, Mitsuoka K, Miyaki S, Kiso M, Nagai A, Hikata T, Osada T, Fukuda N, Yamashita S, Harada D, Mezzano V, Kasai M, Puri PL, Hayashizaki Y, Okado H, Hashimoto M, Asahara H, A systems approach reveals that the myogenesis genome network is regulated by the transcriptional repressor RP58. Dev Cell. 2009 Dec;17(6):836-48 |
1* | J:236440 You L, Yan K, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ, The chromatin regulator Brpf1 regulates embryo development and cell proliferation. J Biol Chem. 2015 May 1;290(18):11349-64 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/17/2024 MGI 6.24 |
|
|