Symbol Name ID |
Sirt1
sirtuin 1 MGI:2135607 |
Age | E0.5 | E1 | E2 | E3 | E3.5 | E4.5 | E5.5 | E6.5 | E7.5 | E8.5 | E9.5 | E10.5 | E11.5 | E12.5 | E13.5 | E14 | E14.5 | E15.5 | E16.5 | E17 | E17.5 | E18 | E18.5 | E | P |
Immunohistochemistry (section) | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 5 | 2 | 2 | 1 | 1 | 2 | 6 | ||||||||||
In situ RNA (section) | 1 | 1 | 1 | 2 | |||||||||||||||||||||
Immunohistochemistry (whole mount) | 1 | 1 | 1 | ||||||||||||||||||||||
In situ RNA (whole mount) | 1 | ||||||||||||||||||||||||
In situ reporter (knock in) | 1 | ||||||||||||||||||||||||
Northern blot | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 3 | |||||||||
Western blot | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 10 | ||||||||||||||||
RT-PCR | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | |||||||||||
cDNA clones | 1 |
Sirt1 sirtuin 1 (Synonyms: Sir2, Sir2alpha) | |
Results | Reference |
2 | J:100324 Bulfone A, Carotenuto P, Faedo A, Aglio V, Garzia L, Bello AM, Basile A, Andre A, Cocchia M, Guardiola O, Ballabio A, Rubenstein JL, Zollo M, Telencephalic embryonic subtractive sequences: a unique collection of neurodevelopmental genes. J Neurosci. 2005 Aug 17;25(33):7586-600 |
2 | J:312438 Cameron B, Lehrmann E, Chih T, Walters J, Buksch R, Snyder S, Goffena J, Lefcort F, Becker KG, George L, Loss of Elp1 perturbs histone H2A.Z and the Notch signaling pathway. Biol Open. 2021 Sep 15;10(9):bio058979 |
1 | J:223236 Di Sante G, Wang L, Wang C, Jiao X, Casimiro MC, Chen K, Pestell TG, Yaman I, Di Rocco A, Sun X, Horio Y, Powell MJ, He X, McBurney MW, Pestell RG, Sirt1-deficient mice have hypogonadotropic hypogonadism due to defective GnRH neuronal migration. Mol Endocrinol. 2015 Feb;29(2):200-12 |
1 | J:138789 Hasegawa K, Yoshikawa K, Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci. 2008 Aug 27;28(35):8772-84 |
3 | J:248208 Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, Sato M, Horio Y, Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15599-604 |
6 | J:330211 Hwang YJ, Sung GJ, Marquardt R, Young SL, Lessey BA, Kim TH, Cheon YP, Jeong JW, SIRT1 plays an important role in implantation and decidualization during mouse early pregnancy. Biol Reprod. 2022 Jun 13;106(6):1072-1082 |
5 | J:151680 Iwahara N, Hisahara S, Hayashi T, Horio Y, Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX. Biochem Biophys Res Commun. 2009 Sep 4;386(4):671-5 |
6* | J:163766 Kawamura Y, Uchijima Y, Horike N, Tonami K, Nishiyama K, Amano T, Asano T, Kurihara Y, Kurihara H, Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. J Clin Invest. 2010 Aug 2;120(8):2817-28 |
1* | J:228563 Koscielny G, Yaikhom G, Iyer V, Meehan TF, Morgan H, Atienza-Herrero J, Blake A, Chen CK, Easty R, Di Fenza A, Fiegel T, Grifiths M, Horne A, Karp NA, Kurbatova N, Mason JC, Matthews P, Oakley DJ, Qazi A, Regnart J, Retha A, Santos LA, Sneddon DJ, Warren J, Westerberg H, Wilson RJ, Melvin DG, Smedley D, Brown SD, Flicek P, Skarnes WC, Mallon AM, Parkinson H, The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res. 2014 Jan;42(Database issue):D802-9 |
3* | J:317362 Kuribayashi H, Baba Y, Iwagawa T, Arai E, Murakami A, Watanabe S, Roles of Nmnat1 in the survival of retinal progenitors through the regulation of pro-apoptotic gene expression via histone acetylation. Cell Death Dis. 2018 Aug 30;9(9):891 |
1* | J:301541 Lee SG, Kim N, Kim SM, Park IB, Kim H, Kim S, Kim BG, Hwang JM, Baek IJ, Gartner A, Park JH, Myung K, Ewing sarcoma protein promotes dissociation of poly(ADP-ribose) polymerase 1 from chromatin. EMBO Rep. 2020 Nov 5;21(11):e48676 |
2 | J:297808 Li B, Li M, Li X, Li H, Lai Y, Huang S, He X, Si X, Zheng H, Liao W, Liao Y, Bin J, Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (Albany NY). 2019 Dec 26;11(24):12546-12567 |
3* | J:162220 Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C, Norland SM, Rice DS, Dosooye N, Shakya S, Mehta P, Curran T, BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol. 2006 Apr;4(4):e86 |
3* | J:81010 McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M, The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2003 Jan;23(1):38-54 |
1 | J:307395 Mirra S, Garcia-Arroyo R, B Domenech E, Gavalda-Navarro A, Herrera-Ubeda C, Oliva C, Garcia-Fernandez J, Artuch R, Villarroya F, Marfany G, CERKL, a retinal dystrophy gene, regulates mitochondrial function and dynamics in the mammalian retina. Neurobiol Dis. 2021 Aug;156:105405 |
7* | J:172620 Ogawa T, Wakai C, Saito T, Murayama A, Mimura Y, Youfu S, Nakamachi T, Kuwagata M, Satoh K, Shioda S, Distribution of the longevity gene product, SIRT1, in developing mouse organs. Congenit Anom (Kyoto). 2011 Jun;51(2):70-9 |
1* | J:100371 Okada A, Kushima K, Aoki Y, Bialer M, Fujiwara M, Identification of early-responsive genes correlated to valproic acid-induced neural tube defects in mice. Birth Defects Res A Clin Mol Teratol. 2005 Apr;73(4):229-38 |
2 | J:322657 Pei J, Liu Z, Wang C, Chu N, Liu L, Tang Y, Liu H, Xiang Q, Cheng H, Li M, Gu W, Progesterone Attenuates SIRT1-Deficiency-Mediated Pre-Eclampsia. Biomolecules. 2022 Mar 9;12(3) |
2* | J:309381 Sadegh C, Ebina W, Arvanites AC, Davidow LS, Rubin LL, Macklis JD, Synthetic modified Fezf2 mRNA (modRNA) with concurrent small molecule SIRT1 inhibition enhances refinement of cortical subcerebral/corticospinal neuron identity from mouse embryonic stem cells. PLoS One. 2021;16(9):e0254113 |
31* | J:87352 Sakamoto J, Miura T, Shimamoto K, Horio Y, Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett. 2004 Jan 2;556(1-3):281-6 |
2 | J:180628 Seifert EL, Caron AZ, Morin K, Coulombe J, Hong He X, Jardine K, Dewar-Darch D, Boekelheide K, Harper ME, McBurney MW, SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice. FASEB J. 2012 Feb;26(2):555-66 |
3* | J:249051 Tang S, Fang Y, Huang G, Xu X, Padilla-Banks E, Fan W, Xu Q, Sanderson SM, Foley JF, Dowdy S, McBurney MW, Fargo DC, Williams CJ, Locasale JW, Guan Z, Li X, Methionine metabolism is essential for SIRT1-regulated mouse embryonic stem cell maintenance and embryonic development. EMBO J. 2017 Nov 2;36(21):3175-3193 |
4* | J:120915 Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y, Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 2007 Mar 2;282(9):6823-32 |
1 | J:307814 Tannous C, Deloux R, Karoui A, Mougenot N, Burkin D, Blanc J, Coletti D, Lavery G, Li Z, Mericskay M, NMRK2 Gene Is Upregulated in Dilated Cardiomyopathy and Required for Cardiac Function and NAD Levels during Aging. Int J Mol Sci. 2021 Mar 29;22(7) |
1 | J:197487 Tiberi L, van den Ameele J, Dimidschstein J, Piccirilli J, Gall D, Herpoel A, Bilheu A, Bonnefont J, Iacovino M, Kyba M, Bouschet T, Vanderhaeghen P, BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat Neurosci. 2012 Dec;15(12):1627-35 |
2 | J:140089 Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, Kim S, Xu X, Zheng Y, Chilton B, Jia R, Zheng ZM, Appella E, Wang XW, Ried T, Deng CX, Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008 Oct 7;14(4):312-23 |
1 | J:344966 Wei Y, Wang X, Ma Z, Xiang P, Liu G, Yin B, Hou L, Shu P, Liu W, Peng X, Sirt6 regulates the proliferation of neural precursor cells and cortical neurogenesis in mice. iScience. 2024 Feb 16;27(2):108706 |
1 | J:212272 Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, Mastick GS, Xu C, Yan W, Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2851-7 |
1* | J:156017 Yokoyama S, Ito Y, Ueno-Kudoh H, Shimizu H, Uchibe K, Albini S, Mitsuoka K, Miyaki S, Kiso M, Nagai A, Hikata T, Osada T, Fukuda N, Yamashita S, Harada D, Mezzano V, Kasai M, Puri PL, Hayashizaki Y, Okado H, Hashimoto M, Asahara H, A systems approach reveals that the myogenesis genome network is regulated by the transcriptional repressor RP58. Dev Cell. 2009 Dec;17(6):836-48 |
1 | J:321746 Yu H, Zhang F, Yan P, Zhang S, Lou Y, Geng Z, Li Z, Zhang Y, Xu Y, Lu Y, Chen C, Wang D, Zhu W, Hu X, Wang J, Zhuang T, Zhang Y, Wu G, Liu J, Zeng C, Pu WT, Sun K, Zhang B, LARP7 Protects Against Heart Failure by Enhancing Mitochondrial Biogenesis. Circulation. 2021;143(20):2007-2022 |
2 | J:244345 Yuan X, Qi H, Li X, Wu F, Fang J, Bober E, Dobreva G, Zhou Y, Braun T, Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J Clin Invest. 2017 Jun 01;127(6):2235-2248 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 11/12/2024 MGI 6.24 |
|
|