Symbol Name ID |
Ago2
argonaute RISC catalytic subunit 2 MGI:2446632 |
Age | E0.5 | E1 | E1.5 | E2 | E2.5 | E3.5 | E7.5 | E9.5 | E10.5 | E11.5 | E12.5 | E13.5 | E14.5 | E15.5 | E16.5 | E18.5 | E | P |
Immunohistochemistry (section) | 1 | |||||||||||||||||
In situ RNA (section) | 1 | 1 | ||||||||||||||||
In situ RNA (whole mount) | 1 | 1 | 1 | |||||||||||||||
In situ reporter (knock in) | 1 | 1 | 1 | |||||||||||||||
Western blot | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 6 | |||||||||
RT-PCR | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 5 |
Ago2 argonaute RISC catalytic subunit 2 (Synonyms: 1110029L17Rik, 2310051F07Rik, argonaute 2, Eif2c2, mKIAA1567) | |
Results | Reference |
5 | J:356413 Amanai M, Brahmajosyula M, Perry AC, A restricted role for sperm-borne microRNAs in mammalian fertilization. Biol Reprod. 2006 Dec;75(6):877-84 |
1 | J:260599 Belanger C, Berube-Simard FA, Leduc E, Bernas G, Campeau PM, Lalani SR, Martin DM, Bielas S, Moccia A, Srivastava A, Silversides DW, Pilon N, Dysregulation of cotranscriptional alternative splicing underlies CHARGE syndrome. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E620-E629 |
2 | J:161968 Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ, A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010 Jun 3;465(7298):584-9 |
1 | J:183920 Chen J, Lai F, Niswander L, The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev. 2012 Apr 15;26(8):803-15 |
1 | J:211935 Dorval V, Mandemakers W, Jolivette F, Coudert L, Mazroui R, De Strooper B, Hebert SS, Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models. PLoS One. 2014;9(1):e85510 |
1 | J:282329 Hildebrandt MR, Wang Y, Li L, Yasmin L, Glubrecht DD, Godbout R, Cytoplasmic aggregation of DDX1 in developing embryos: Early embryonic lethality associated with Ddx1 knockout. Dev Biol. 2019 Nov 15;455(2):420-433 |
1 | J:282136 Kato Y, Iwamori T, Ninomiya Y, Kohda T, Miyashita J, Sato M, Saga Y, ELAVL2-directed RNA regulatory network drives the formation of quiescent primordial follicles. EMBO Rep. 2019 Dec 5;20(12):e48251 |
1 | J:268688 Kim YJ, Khoshkhoo S, Frankowski JC, Zhu B, Abbasi S, Lee S, Wu YE, Hunt RF, Chd2 Is Necessary for Neural Circuit Development and Long-Term Memory. Neuron. 2018 Dec 5;100(5):1180-1193.e6 |
3 | J:219284 La Rocca G, Olejniczak SH, Gonzalez AJ, Briskin D, Vidigal JA, Spraggon L, DeMatteo RG, Radler MR, Lindsten T, Ventura A, Tuschl T, Leslie CS, Thompson CB, In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):767-72 |
1 | J:294716 Liang ZS, Cimino I, Yalcin B, Raghupathy N, Vancollie VE, Ibarra-Soria X, Firth HV, Rimmington D, Farooqi IS, Lelliott CJ, Munger SC, O'Rahilly S, Ferguson-Smith AC, Coll AP, Logan DW, Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity. PLoS Genet. 2020 Sep;16(9):e1008916 |
3 | J:93081 Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ, Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004 Sep 3;305(5689):1437-41 |
2* | J:99751 Lu J, Qian J, Chen F, Tang X, Li C, Cardoso WV, Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem Biophys Res Commun. 2005 Aug 26;334(2):319-23 |
4* | J:103446 McKee AE, Minet E, Stern C, Riahi S, Stiles CD, Silver PA, A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev Biol. 2005 Jul 20;5:14 |
3* | J:160269 Michon F, Tummers M, Kyyronen M, Frilander MJ, Thesleff I, Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. Dev Biol. 2010 Apr 15;340(2):355-68 |
1 | J:121791 Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I, One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics. 2007 Jun;89(6):687-696 |
4 | J:264953 Nicklas S, Okawa S, Hillje AL, Gonzalez-Cano L, Del Sol A, Schwamborn JC, The RNA helicase DDX6 regulates cell-fate specification in neural stem cells via miRNAs. Nucleic Acids Res. 2015 Mar 11;43(5):2638-54 |
2* | J:174767 Tang F, Barbacioru C, Nordman E, Bao S, Lee C, Wang X, Tuch BB, Heard E, Lao K, Surani MA, Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS One. 2011;6(6):e21208 |
1 | J:287165 Wang J, Lee JE, Riemondy K, Yu Y, Marquez SM, Lai EC, Yi R, XPO5 promotes primary miRNA processing independently of RanGTP. Nat Commun. 2020 Apr 15;11(1):1845 |
8* | J:317196 Zhang Y, Tan YY, Chen PP, Xu H, Xie SJ, Xu SJ, Li B, Li JH, Liu S, Yang JH, Zhou H, Qu LH, Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death Dis. 2021 Dec 14;12(12):1161 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/17/2024 MGI 6.24 |
![]() |
|