Symbol Name ID |
Tpm1
tropomyosin 1, alpha MGI:98809 |
Age | E0.5 | E1 | E2 | E8.5 | E9 | E9.5 | E10.5 | E11 | E11.5 | E12 | E12.5 | E13.5 | E14.5 | E16.5 | E18.5 | E | P |
Immunohistochemistry (section) | 2 | 1 | 4 | 4 | 1 | 4 | 1 | 3 | 1 | 2 | 1 | 4 | |||||
In situ RNA (section) | 1 | 3 | |||||||||||||||
Immunohistochemistry (whole mount) | 1 | ||||||||||||||||
In situ RNA (whole mount) | 1 | 1 | |||||||||||||||
In situ reporter (knock in) | 1 | ||||||||||||||||
Northern blot | 1 | 1 | 1 | 2 | |||||||||||||
Western blot | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | ||||||||
RT-PCR | 1 | 1 | 1 | 1 | 8 | ||||||||||||
cDNA clones | 1 | 1 | |||||||||||||||
Nuclease S1 | 1 | 1 |
Tpm1 tropomyosin 1, alpha (Synonyms: alpha-TM, TM2, Tm3, Tpm-1) | |
Results | Reference |
4* | J:229890 Ang SY, Uebersohn A, Spencer CI, Huang Y, Lee JE, Ge K, Bruneau BG, KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development. 2016 Mar 1;143(5):810-21 |
1* | J:313619 Bedogni F, Hevner RF, Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Front Mol Neurosci. 2021;14:686034 |
3* | J:44952 Blanchard EM, Iizuka K, Christe M, Conner DA, Geisterfer-Lowrance A, Schoen FJ, Maughan DW, Seidman CE, Seidman JG, Targeted ablation of the murine alpha-tropomyosin gene. Circ Res. 1997 Dec;81(6):1005-10 |
1 | J:195548 Brody MJ, Hacker TA, Patel JR, Feng L, Sadoshima J, Tevosian SG, Balijepalli RC, Moss RL, Lee Y, Ablation of the cardiac-specific gene leucine-rich repeat containing 10 (Lrrc10) results in dilated cardiomyopathy. PLoS One. 2012;7(12):e51621 |
2* | J:259848 Chal J, Al Tanoury Z, Oginuma M, Moncuquet P, Gobert B, Miyanari A, Tassy O, Guevara G, Hubaud A, Bera A, Sumara O, Garnier JM, Kennedy L, Knockaert M, Gayraud-Morel B, Tajbakhsh S, Pourquie O, Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development. 2018 Mar 19;145(6):dev157339 |
1 | J:131962 Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH, Meissner G, Patterson C, Hannon GJ, Wang DZ, Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2111-6 |
1 | J:33282 Chevray PM, Nathans D, Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5789-93 |
1 | J:341539 Chiang IK, Humphrey D, Mills RJ, Kaltzis P, Pachauri S, Graus M, Saha D, Wu Z, Young P, Sim CB, Davidson T, Hernandez-Garcia A, Shaw CA, Renwick A, Scott DA, Porrello ER, Wong ES, Hudson JE, Red-Horse K, Del Monte-Nieto G, Francois M, Sox7-positive endothelial progenitors establish coronary arteries and govern ventricular compaction. EMBO Rep. 2023 Oct 9;24(10):e55043 |
1 | J:280323 Cho E, Kang H, Kang DK, Lee Y, Myocardial-specific ablation of Jumonji and AT-rich interaction domain-containing 2 (Jarid2) leads to dilated cardiomyopathy in mice. J Biol Chem. 2019 Mar 29;294(13):4981-4996 |
4 | J:45993 Clayton L, Johnson MH, Tropomyosin in preimplantation mouse development: identification, expression, and organization during cell division and polarization. Exp Cell Res. 1998 Feb 1;238(2):450-64 |
2 | J:291994 de Groot NE, van den Hoogenhof MMG, Najafi A, van der Made I, van der Velden J, Beqqali A, Pinto YM, Creemers EE, Heterozygous loss of Rbm24 in the adult mouse heart increases sarcomere slack length but does not affect function. Sci Rep. 2020 May 6;10(1):7687 |
1 | J:178290 del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Perez-Pomares JM, de la Pompa JL, Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011 Apr 1;108(7):824-36 |
1 | J:181488 Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG, Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet. 2012;44(3):343-7 |
1 | J:313510 Denkena J, Zaisser A, Merz B, Klinger B, Kuhl D, Bluthgen N, Hermey G, Neuronal activity regulates alternative exon usage. Mol Brain. 2020 Nov 10;13(1):148 |
1* | J:153498 Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nurnberger A, SchmidtK, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, et al., A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011;9(1):e1000582 |
1 | J:342149 Edwards W, Bussey OK, Conlon FL, The Tbx20-TLE interaction is essential for the maintenance of the second heart field. Development. 2023 Nov 1;150(21):dev201677 |
1 | J:307972 Farrell ET, Grimes AC, de Lange WJ, Armstrong AE, Ralphe JC, Increased Postnatal Cardiac Hyperplasia Precedes Cardiomyocyte Hypertrophy in a Model of Hypertrophic Cardiomyopathy. Front Physiol. 2017;8:414 |
1 | J:331853 Gao R, Liang X, Cheedipudi S, Cordero J, Jisng X, Zhang Q, Caputo L, Gunther S, Kuenne C, Ren Y, Bhattacharya S, Yuan X, Barreto G, Chen Y, Braun T, Evans SM, Sun Y, Dobreva G, Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Res. 2019 Jun;29(6):486-501 |
1* | J:139177 Hoffman BG, Zavaglia B, Witzsche J, Ruiz de Algara T, Beach M, Hoodless PA, Jones SJ, Marra MA, Helgason CD, Identification of transcripts with enriched expression in the developing and adult pancreas. Genome Biol. 2008;9(6):R99 |
1 | J:121230 Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM, Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 2007 May 1;21(9):1098-112 |
1 | J:108465 Issa LL, Palmer SJ, Guven KL, Santucci N, Hodgson VR, Popovic K, Joya JE, Hardeman EC, MusTRD can regulate postnatal fiber-specific expression. Dev Biol. 2006 May 1;293(1):104-15 |
2 | J:101320 Jeanes A, Wilhelm D, Wilson MJ, Bowles J, McClive PJ, Sinclair AH, Koopman P, Evaluation of candidate markers for the peritubular myoid cell lineage in the developing mouse testis. Reproduction. 2005 Oct;130(4):509-16 |
2 | J:96055 Kochilas LK, Li J, Jin F, Buck CA, Epstein JA, p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res. 1999 May;45(5 Pt 1):635-42 |
1 | J:347631 Li C, Zhang Y, Shen J, Bao H, Zhao Y, Li D, Li S, Liu Y, Yang J, Zhou Z, Gao K, Zhao L, Pei Y, Lu Y, Pan Z, Cai B, Cfp1 Controls Cardiomyocyte Maturation by Modifying Histone H3K4me3 of Structural, Metabolic, and Contractile Related Genes. Adv Sci (Weinh). 2024 Mar;11(11):e2305992 |
1 | J:192831 Lin JC, Yan YT, Hsieh WK, Peng PJ, Su CH, Tarn WY, RBM4 promotes pancreas cell differentiation and insulin expression. Mol Cell Biol. 2013 Jan;33(2):319-27 |
2* | J:163968 Liu X, Ramjiganesh T, Chen YH, Chung SW, Hall SR, Schissel SL, Padera RF Jr, Liao R, Ackerman KG, Kajstura J, Leri A, Anversa P, Yet SF, Layne MD, Perrella MA, Disruption of striated preferentially expressed gene locus leads to dilated cardiomyopathy in mice. Circulation. 2009 Jan 20;119(2):261-8 |
1 | J:327414 Manivannan S, Mansfield C, Zhang X, Kodigepalli KM, Majumdar U, Garg V, Basu M, Single-cell transcriptomic profiling unveils dysregulation of cardiac progenitor cells and cardiomyocytes in a mouse model of maternal hyperglycemia. Commun Biol. 2022 Aug 15;5(1):820 |
1 | J:235199 Mastrototaro G, Liang X, Li X, Carullo P, Piroddi N, Tesi C, Gu Y, Dalton ND, Peterson KL, Poggesi C, Sheikh F, Chen J, Bang ML, Nebulette knockout mice have normal cardiac function, but show Z-line widening and up-regulation of cardiac stress markers. Cardiovasc Res. 2015 Jul 15;107(2):216-25 |
1* | J:86589 McClive PJ, Hurley TM, Sarraj MA, van den Bergen JA, Sinclair AH, Subtractive hybridisation screen identifies sexually dimorphic gene expression in the embryonic mouse gonad. Genesis. 2003 Oct;37(2):84-90 |
2* | J:211921 McKeown CR, Nowak RB, Gokhin DS, Fowler VM, Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo. Dev Dyn. 2014 Jun;243(6):800-17 |
3 | J:11851 Muthuchamy M, Pajak L, Howles P, Doetschman T, Wieczorek DF, Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos. Mol Cell Biol. 1993 Jun;13(6):3311-23 |
1* | J:97059 Nassar R, Malouf NN, Mao L, Rockman HA, Oakeley AE, Frye JR, Herlong JR, Sanders SP, Anderson PA, cTnT1, a cardiac troponin T isoform, decreases myofilament tension and affects the left ventricular pressure waveform. Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1147-56 |
1 | J:317064 O'Neill TJ 4th, Mack CP, Taylor JM, Germline deletion of FAK-related non-kinase delays post-natal cardiomyocyte mitotic arrest. J Mol Cell Cardiol. 2012 Aug;53(2):156-64 |
5 | J:266206 Peterson JC, Chughtai M, Wisse LJ, Gittenberger-de Groot AC, Feng Q, Goumans MTH, VanMunsteren JC, Jongbloed MRM, DeRuiter MC, Nos3 mutation leads to abnormal neural crest cell and second heart field lineage patterning in bicuspid aortic valve formation. Dis Model Mech. 2018 Sep 20;:dmm034637 |
1 | J:337421 Shibata T, Ikawa M, Sakasai R, Ishigaki Y, Kiyokawa E, Iwabuchi K, Singh DP, Sasaki H, Kubo E, Lens-specific conditional knockout of tropomyosin 1 gene in mice causes abnormal fiber differentiation and lens opacity. Mech Ageing Dev. 2021 Jun;196:111492 |
1 | J:294106 Soulez M, Saba-El-Leil MK, Turgeon B, Mathien S, Coulombe P, Klinger S, Rousseau J, Levesque K, Meloche S, Reevaluation of the Role of Extracellular Signal-Regulated Kinase 3 in Perinatal Survival and Postnatal Growth Using New Genetically Engineered Mouse Models. Mol Cell Biol. 2019 Mar 15;39(6) |
1* | J:205662 Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguin P, Holloway AK, Mori AD, Wylie JN, Munson C, Zhu Y, Zhou YQ, Yeh RF, Henkelman RM, Harvey RP, Metzger D, Chambon P, Stainier DY, Pollard KS, Scott IC, Bruneau BG, Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun. 2011;2:187 |
3 | J:320916 Teekakirikul P, Zhu W, Xu X, Young CB, Tan T, Smith AM, Wang C, Peterson KA, Gabriel GC, Ho S, Sheng Y, Moreau de Bellaing A, Sonnenberg DA, Lin J, Fotiou E, Tenin G, Wang MX, Wu YL, Feinstein T, Devine W, Gou H, Bais AS, Glennon BJ, Zahid M, wong TC, Ahmad F, Rynkiewiz MJ, Lehman WJ, Keavney B, Alastaqlo TP, Freckmann ML, Orwig K, Murray S, Ware SM, Zhao H, Feingold B, Lo CW, Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability. Cell Rep Med. 2022;3 |
2* | J:306325 Wang Y, Jiang T, Xu J, Gu Y, Zhou Y, Lin Y, Wu Y, Li W, Wang C, Shen B, Mo X, Wang X, Zhou B, Ding C, Hu Z, Mutations in RNA Methyltransferase Gene NSUN5 Confer High Risk of Outflow Tract Malformation. Front Cell Dev Biol. 2021;9:623394 |
2 | J:263962 Wilczewski CM, Hepperla AJ, Shimbo T, Wasson L, Robbe ZL, Davis IJ, Wade PA, Conlon FL, CHD4 and the NuRD complex directly control cardiac sarcomere formation. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6727-6732 |
2 | J:354186 Wilken MB, Fonar G, Qiu R, Bennett L, Tober J, Nations C, Pavani G, Tsao V, Garifallou J, Petit C, Maguire JA, Gagne A, Okoli N, Gadue P, Chou ST, French DL, Speck NA, Thom CS, Tropomyosin 1 deficiency facilitates cell state transitions and enhances hemogenic endothelial cell specification during hematopoiesis. Stem Cell Reports. 2024 Sep 10;19(9):1264-1276 |
2 | J:256653 Wu T, Mu Y, Bogomolovas J, Fang X, Veevers J, Nowak RB, Pappas CT, Gregorio CC, Evans SM, Fowler VM, Chen J, HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11956-11961 |
1 | J:175992 Zhang SS, Kim KH, Rosen A, Smyth JW, Sakuma R, Delgado-Olguin P, Davis M, Chi NC, Puviindran V, Gaborit N, Sukonnik T, Wylie JN, Brand-Arzamendi K, Farman GP, Kim J, Rose RA, Marsden PA, Zhu Y, Zhou YQ, Miquerol L, Henkelman RM, Stainier DY, Shaw RM, HuiCC, Bruneau BG, Backx PH, Iroquois homeobox gene 3 establishes fast conduction in the cardiac His-Purkinje network. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13576-81 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/17/2024 MGI 6.24 |
![]() |
|