ID/Version |
|
||||||||||||||
Sequence description from provider |
RecName: Full=Histone H2AX; Short=H2a/x;AltName: Full=Histone H2A.X; | ||||||||||||||
Provider | SWISS-PROT | ||||||||||||||
Sequence |
Polypeptide
143
aa
|
||||||||||||||
Source | |||||||||||||||
Annotated genes and markers |
Follow the symbol links to get more information on the GO terms,
expression assays, orthologs, phenotypic alleles, and other information
for the genes or markers below.
|
||||||||||||||
Sequence references in MGI |
J:11221
Nagata T, et al., Polyadenylated and 3' processed mRNAs are transcribed from the mouse histone H2A.X gene. Nucleic Acids Res. 1991 May 11;19(9):2441-7
J:22825 Porcher C, et al., Structure of the mouse H2A.X gene and physical linkage to the UPS locus on chromosome 9: assignment of the human H2A.X gene to 11q23 by sequence analysis. Genomics. 1995 Jan 1;25(1):312-3 J:73342 Petersen S, et al., AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature. 2001 Dec 6;414(6864):660-5 J:76360 Celeste A, et al., Genomic instability in mice lacking histone H2AX. Science. 2002 May 3;296(5569):922-7 J:84879 Bassing CH, et al., Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell. 2003 Aug 8;114(3):359-70 J:84909 Bassing CH, et al., Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8173-8 J:86590 Celeste A, et al., H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell. 2003 Aug 8;114(3):371-83 J:95016 Turner JM, et al., BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol. 2004 Dec 14;14(23):2135-42 J:96007 Kang J, et al., Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Mol Cell Biol. 2005 Jan;25(2):661-70 J:109017 Fernandez-Capetillo O, et al., H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell. 2003 Apr;4(4):497-508 J:126641 Mahadevaiah SK, et al., Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet. 2001 Mar;27(3):271-6 J:143888 Xiao A, et al., WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature. 2009 Jan 1;457(7225):57-62 J:192634 Kogo H, et al., HORMAD2 is essential for synapsis surveillance during meiotic prophase via the recruitment of ATR activity. Genes Cells. 2012 Nov;17(11):897-912 J:203468 Park J, et al., SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013 Jun 27;50(6):919-30 J:268520 Zhang Q, et al., Evolutionarily-conserved MZIP2 is essential for crossover formation in mammalian meiosis. Commun Biol. 2018;1:147 J:285969 Liu H, et al., SCRE serves as a unique synaptonemal complex fastener and is essential for progression of meiosis prophase I in mice. Nucleic Acids Res. 2019 Jun 20;47(11):5670-5683 J:292518 Huttlin EL, et al., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89 J:297328 Zhang Q, et al., SPO16 binds SHOC1 to promote homologous recombination and crossing-over in meiotic prophase I. Sci Adv. 2019 Jan;5(1):eaau9780 J:341403 Burma S, et al., ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001 Nov 9;276(45):42462-7 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/17/2024 MGI 6.24 |
![]() |
|