ID/Version |
|
||||||||||||||
Sequence description from provider |
RecName: Full=Cryptochrome-1; | ||||||||||||||
Provider | SWISS-PROT | ||||||||||||||
Sequence |
Polypeptide
606
aa
|
||||||||||||||
Source | |||||||||||||||
Annotated genes and markers |
Follow the symbol links to get more information on the GO terms,
expression assays, orthologs, phenotypic alleles, and other information
for the genes or markers below.
|
||||||||||||||
Sequence references in MGI |
J:47904
Miyamoto Y, et al., Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6097-102
J:51295 Kobayashi K, et al., Characterization of photolyase/blue-light receptor homologs in mouse and human cells. Nucleic Acids Res. 1998 Nov 15;26(22):5086-92 J:57719 Miyamoto Y, et al., Circadian regulation of cryptochrome genes in the mouse. Brain Res Mol Brain Res. 1999 Aug 25;71(2):238-43 J:73655 Lee C, et al., Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001 Dec 28;107(7):855-67 J:87576 Lee C, et al., Direct association between mouse PERIOD and CKIepsilon is critical for a functioning circadian clock. Mol Cell Biol. 2004 Jan;24(2):584-94 J:99680 The FANTOM Consortium and RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group), The Transcriptional Landscape of the Mammalian Genome. Science. 2005;309(5740):1559-1563 J:106987 Chaves I, et al., Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance. Mol Cell Biol. 2006 Mar;26(5):1743-53 J:116444 Etchegaray JP, et al., The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem. 2006 Jul 28;281(30):21209-15 J:122872 Siepka SM, et al., Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell. 2007 Jun 1;129(5):1011-23 J:147991 Ramsey KM, et al., Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009 May 1;324(5927):651-4 J:153754 Lamia KA, et al., AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009 Oct 16;326(5951):437-40 J:154857 Chen R, et al., Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell. 2009 Nov 13;36(3):417-30 J:156994 Schmutz I, et al., The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010 Feb 15;24(4):345-57 J:162577 Guillaumond F, et al., Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol Cell Biol. 2010 Jun;30(12):3059-70 J:170767 Ukai-Tadenuma M, et al., Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell. 2011 Jan 21;144(2):268-81 J:173042 Hara Y, et al., Molecular characterization of Mybbp1a as a co-repressor on the Period2 promoter. Nucleic Acids Res. 2009 Mar;37(4):1115-26 J:176743 Koyanagi S, et al., cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene. J Biol Chem. 2011 Sep 16;286(37):32416-23 J:179376 Lamia KA, et al., Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 2011 Dec 22;480(7378):552-6 J:192252 Na J, et al., Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene. PLoS One. 2012;7(10):e48152 J:194037 Yoo SH, et al., Competing E3 Ubiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm. Cell. 2013 Feb 28;152(5):1091-105 J:196293 Hirano A, et al., FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell. 2013 Feb 28;152(5):1106-18 J:196953 Anand SN, et al., Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation. J Neurosci. 2013 Apr 24;33(17):7145-53 J:198214 Barclay JL, et al., High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice. Am J Physiol Endocrinol Metab. 2013 May 15;304(10):E1053-63 J:204645 Zhao WN, et al., CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat Cell Biol. 2007 Mar;9(3):268-75 J:205586 Annayev Y, et al., Gene model 129 (gm129) encodes a novel transcriptional repressor that modulates circadian gene expression. J Biol Chem. 2014 Feb 21;289(8):5013-24 J:207239 Gao P, et al., Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length. J Biol Chem. 2013 Dec 6;288(49):35277-86 J:209425 Kang TH, et al., Modulation of ATR-mediated DNA damage checkpoint response by cryptochrome 1. Nucleic Acids Res. 2014 Apr;42(7):4427-34 J:209461 Han DH, et al., Modulation of glucocorticoid receptor induction properties by core circadian clock proteins. Mol Cell Endocrinol. 2014 Mar 5;383(1-2):170-80 J:209472 Ono D, et al., Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nat Commun. 2013;4:1666 J:209477 Ye R, et al., Biochemical analysis of the canonical model for the mammalian circadian clock. J Biol Chem. 2011 Jul 22;286(29):25891-902 J:209480 Zhang EE, et al., Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med. 2010 Oct;16(10):1152-6 J:209491 Naruse Y, et al., Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol. 2004 Jul;24(14):6278-87 J:210938 Yagita K, et al., Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 2002 Mar 15;21(6):1301-14 J:212062 Engelen E, et al., Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock. PLoS One. 2013;8(2):e56623 J:213082 Li DQ, et al., Metastasis-associated protein 1 is an integral component of the circadian molecular machinery. Nat Commun. 2013;4:2545 J:240095 Shi G, et al., Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function. Cell Rep. 2016 Feb 02;14(4):823-34 J:243464 Tong X, et al., CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1. PLoS One. 2015;10(10):e0139725 J:244975 Kriebs A, et al., Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8776-8781 J:245577 Tong X, et al., DDB1-Mediated CRY1 Degradation Promotes FOXO1-Driven Gluconeogenesis in Liver. Diabetes. 2017 Oct;66(10):2571-2582 J:255965 Jordan SD, et al., CRY1/2 Selectively Repress PPARdelta and Limit Exercise Capacity. Cell Metab. 2017 Jul 5;26(1):243-255.e6 J:266073 Toledo M, et al., Autophagy Regulates the Liver Clock and Glucose Metabolism by Degrading CRY1. Cell Metab. 2018 Aug 7;28(2):268-281.e4 J:268088 Saran AR, et al., JMJD5 links CRY1 function and proteasomal degradation. PLoS Biol. 2018 Nov;16(11):e2006145 J:273529 Wong JCY, et al., Differential roles for cryptochromes in the mammalian retinal clock. FASEB J. 2018 Aug;32(8):4302-4314 J:283196 Hirano A, et al., USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock. PLoS One. 2016;11(4):e0154263 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/10/2024 MGI 6.24 |
|
|