ID/Version |
|
||||||||||||||
Sequence description from provider |
RecName: Full=NAD-dependent protein deacetylase sirtuin-1; EC=2.3.1.286 {ECO:0000255|PROSITE-ProRule:PRU00236, ECO:0000269|PubMed:20167603, ECO:0000269|PubMed:28883095};AltName: Full=NAD-dependent protein deacylase sirtuin-1 {ECO:0000305}; | ||||||||||||||
Provider | SWISS-PROT | ||||||||||||||
Sequence |
Polypeptide
737
aa
|
||||||||||||||
Source | |||||||||||||||
Annotated genes and markers |
Follow the symbol links to get more information on the GO terms,
expression assays, orthologs, phenotypic alleles, and other information
for the genes or markers below.
|
||||||||||||||
Sequence references in MGI |
J:65145
Imai S, et al., Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403(6771):795-800
J:72328 Luo J, et al., Negative Control of p53 by Sir2alpha Promotes Cell Survival under Stress. Cell. 2001 Oct 19;107(2):137-48 J:81010 McBurney MW, et al., The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2003 Jan;23(1):38-54 J:85542 Cheng HL, et al., Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10794-9 J:91106 Picard F, et al., Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004 Jun 17;429(6993):771-6 J:96630 Rodgers JT, et al., Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005 Mar 3;434(7029):113-8 J:97765 Bouras T, et al., SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem. 2005 Mar 18;280(11):10264-76 J:98701 Nemoto S, et al., SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005 Apr 22;280(16):16456-60 J:100638 Moynihan KA, et al., Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005 Aug;2(2):105-17 J:107100 Bordone L, et al., Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006 Feb;4(2):e31 J:120915 Tanno M, et al., Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 2007 Mar 2;282(9):6823-32 J:122512 Gerhart-Hines Z, et al., Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007 Apr 4;26(7):1913-23 J:126570 Wong S, et al., Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J. 2007 Nov 1;407(3):451-60 J:127714 Vaquero A, et al., SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007 Nov 15;450(7168):440-4 J:128457 Zhang J, The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem. 2007 Nov 23;282(47):34356-64 J:132188 Coussens M, et al., Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS One. 2008;3(2):e1571 J:132698 Lee IH, et al., A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3374-9 J:134888 Li X, et al., SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007 Oct 12;28(1):91-106 J:135171 Fulco M, et al., Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008 May;14(5):661-73 J:139295 Nakahata Y, et al., The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008 Jul 25;134(2):329-40 J:139296 Asher G, et al., SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008 Jul 25;134(2):317-28 J:147991 Ramsey KM, et al., Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009 May 1;324(5927):651-4 J:148170 Purushotham A, et al., Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009 Apr;9(4):327-38 J:149804 Han MK, et al., SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell. 2008 Mar 6;2(3):241-51 J:152462 Kang H, et al., CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS One. 2009;4(8):e6611 J:160869 Sequeira J, et al., sirt1-null mice develop an autoimmune-like condition. Exp Cell Res. 2008 Oct 1;314(16):3069-74 J:163084 Goitre L, et al., KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One. 2010;5(7):e11786 J:163162 Ramadori G, et al., SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010 Jul 4;12(1):78-87 J:165940 Guo X, et al., DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem. 2010 Apr 23;285(17):13223-32 J:166226 Lynch CJ, et al., SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One. 2010;5(10):e13502 J:167988 Palacios JA, et al., SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010 Dec 27;191(7):1299-313 J:168151 Kornberg MD, et al., GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol. 2010 Nov;12(11):1094-100 J:169315 Powell MJ, et al., Disruption of a Sirt1-dependent autophagy checkpoint in the prostate results in prostatic intraepithelial neoplasia lesion formation. Cancer Res. 2011 Feb 1;71(3):964-75 J:178276 Wang C, et al., Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol. 2006 Sep;8(9):1025-31 J:178278 Chen WY, et al., Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005 Nov 4;123(3):437-48 J:178279 Daitoku H, et al., Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10042-7 J:180466 Kume S, et al., SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem. 2007 Jan 5;282(1):151-8 J:180573 Lan F, et al., SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008 Oct 10;283(41):27628-35 J:182378 Grimm AA, et al., A nutrient-sensitive interaction between Sirt1 and HNF-1alpha regulates Crp expression. Aging Cell. 2011 Apr;10(2):305-17 J:182476 Ponugoti B, et al., SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010 Oct 29;285(44):33959-70 J:184684 Nakae J, et al., Novel repressor regulates insulin sensitivity through interaction with Foxo1. EMBO J. 2012 May 16;31(10):2275-95 J:193985 Dominy JE Jr, et al., The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell. 2012 Dec 28;48(6):900-13 J:197487 Tiberi L, et al., BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat Neurosci. 2012 Dec;15(12):1627-35 J:215876 Wang FM, et al., Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J. 2011 Jan 1;433(1):245-52 J:231208 Muth V, et al., Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J. 2001 Mar 15;20(6):1353-62 J:250978 Ianni A, et al., Sirt7 stabilizes rDNA heterochromatin through recruitment of DNMT1 and Sirt1. Biochem Biophys Res Commun. 2017 Oct 21;492(3):434-440 J:256921 Fang J, et al., Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8352-E8361 J:265944 Latorre-Muro P, et al., Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Mol Cell. 2018 Sep 6;71(5):718-732.e9 J:266247 Fukuda M, et al., SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix. Nat Commun. 2018 Jul 19;9(1):2833 J:276379 Hallows WC, et al., Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10230-10235 J:292518 Huttlin EL, et al., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/10/2024 MGI 6.24 |
|
|