ID/Version |
|
||||||||||||||
Sequence description from provider |
RecName: Full=X-linked retinitis pigmentosa GTPase regulator; Short=mRpgr;Flags: Precursor; | ||||||||||||||
Provider | SWISS-PROT | ||||||||||||||
Sequence |
Polypeptide
1001
aa
|
||||||||||||||
Source | |||||||||||||||
Annotated genes and markers |
Follow the symbol links to get more information on the GO terms,
expression assays, orthologs, phenotypic alleles, and other information
for the genes or markers below.
|
||||||||||||||
Sequence references in MGI |
J:48951
Yan D, et al., Biochemical characterization and subcellular localization of the mouse retinitis pigmentosa GTPase regulator (mRpgr). J Biol Chem. 1998 Jul 31;273(31):19656-63
J:56612 Kirschner R, et al., RPGR transcription studies in mouse and human tissues reveal a retina-specific isoform that is disrupted in a patient with X-linked retinitis pigmentosa. Hum Mol Genet. 1999 Aug;8(8):1571-8 J:72570 Kirschner R, et al., DNA sequence comparison of human and mouse retinitis pigmentosa GTPase regulator (RPGR) identifies tissue-specific exons and putative regulatory elements. Hum Genet. 2001 Sep;109(3):271-8 J:99279 Shu X, et al., RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin. Hum Mol Genet. 2005 May 1;14(9):1183-97 J:99680 The FANTOM Consortium and RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group), The Transcriptional Landscape of the Mammalian Genome. Science. 2005;309(5740):1559-1563 J:102458 Khanna H, et al., RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J Biol Chem. 2005 Sep 30;280(39):33580-7 J:108467 Chang B, et al., In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet. 2006 Jun 1;15(11):1847-57 J:140894 Brunner S, et al., Overexpression of RPGR leads to male infertility in mice due to defects in flagellar assembly. Biol Reprod. 2008 Oct;79(4):608-17 J:160802 Brunner S, et al., Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds. Invest Ophthalmol Vis Sci. 2010 Feb;51(2):1106-15 J:168215 Linari M, et al., The retinitis pigmentosa GTPase regulator, RPGR, interacts with the delta subunit of rod cyclic GMP phosphodiesterase. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1315-20 J:181417 Wright RN, et al., Misexpression of the constitutive Rpgr(ex1-19) variant leads to severe photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2011 Jul;52(8):5189-201 J:196243 Wright RN, et al., RpgrORF15 connects to the usher protein network through direct interactions with multiple whirlin isoforms. Invest Ophthalmol Vis Sci. 2012 Mar;53(3):1519-29 J:237833 Thompson DA, et al., Rd9 is a naturally occurring mouse model of a common form of retinitis pigmentosa caused by mutations in RPGR-ORF15. PLoS One. 2012;7(5):e35865 J:264617 Dharmat R, et al., SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. J Cell Biol. 2018 Aug 6;217(8):2851-2865 J:292518 Huttlin EL, et al., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/10/2024 MGI 6.24 |
![]() |
|