ID/Version |
|
||||||||||||||
Sequence description from provider |
RecName: Full=Kelch-like ECH-associated protein 1 {ECO:0000303|PubMed:9887101};AltName: Full=Cytosolic inhibitor of Nrf2 {ECO:0000303|Ref.2}; Short=INrf2 {ECO:0000303|Ref.2}; | ||||||||||||||
Provider | SWISS-PROT | ||||||||||||||
Sequence |
Polypeptide
624
aa
|
||||||||||||||
Source | |||||||||||||||
Annotated genes and markers |
Follow the symbol links to get more information on the GO terms,
expression assays, orthologs, phenotypic alleles, and other information
for the genes or markers below.
|
||||||||||||||
Sequence references in MGI |
J:61871
Itoh K, et al., Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76-86
J:78907 Dinkova-Kostova AT, et al., Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11908-13 J:83874 McMahon M, et al., Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem. 2003 Jun 13;278(24):21592-600 J:86392 Wakabayashi N, et al., Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet. 2003 Nov;35(3):238-45 J:86686 Okazaki N, et al., Prediction of the coding sequences of mouse homologues of KIAA gene: III. the complete nucleotide sequences of 500 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries. DNA Res. 2003 Aug 31;10(4):167-80 J:99680 The FANTOM Consortium and RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group), The Transcriptional Landscape of the Mammalian Genome. Science. 2005;309(5740):1559-1563 J:108124 Padmanabhan B, et al., Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell. 2006 Mar 3;21(5):689-700 J:133900 Yamamoto T, et al., Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol. 2008 Apr;28(8):2758-70 J:135362 Watai Y, et al., Subcellular localization and cytoplasmic complex status of endogenous Keap1. Genes Cells. 2007 Oct;12(10):1163-78 J:162670 Lau A, et al., A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol. 2010 Jul;30(13):3275-85 J:166156 McMahon M, et al., Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18838-43 J:172945 Komatsu M, et al., The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010 Mar;12(3):213-23 J:177485 Adam J, et al., Renal Cyst Formation in Fh1-Deficient Mice Is Independent of the Hif/Phd Pathway: Roles for Fumarate in KEAP1 Succination and Nrf2 Signaling. Cancer Cell. 2011 Oct 18;20(4):524-37 J:188592 Taguchi K, et al., Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13561-6 J:203811 Ichimura Y, et al., Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013 Sep 12;51(5):618-31 J:235914 Saito R, et al., Characterizations of Three Major Cysteine Sensors of Keap1 in Stress Response. Mol Cell Biol. 2015 Nov 02;36(2):271-84 J:240280 Tong KI, et al., Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol. 2006 Apr;26(8):2887-900 J:247330 Suzuki T, et al., Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J Biol Chem. 2017 Oct 13;292(41):16817-16824 J:279942 Kobayashi A, et al., Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004 Aug;24(16):7130-9 J:279946 Cullinan SB, et al., The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004 Oct;24(19):8477-86 J:292518 Huttlin EL, et al., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89 |
Mouse Genome Database (MGD), Gene Expression Database (GXD), Mouse Models of Human Cancer database (MMHCdb) (formerly Mouse Tumor Biology (MTB)), Gene Ontology (GO) |
||
Citing These Resources Funding Information Warranty Disclaimer, Privacy Notice, Licensing, & Copyright Send questions and comments to User Support. |
last database update 12/17/2024 MGI 6.24 |
|
|